浓盐溶液中锂、镁氯化物的分离

——氯化氢盐析氯化镁提取氯化锂

四室 高仕扬 陈敬清 刘铸唐 吴景泉 王凤鸣 常锡来 符廷进 王建中

锂盐的应用在国防和国民经济中具有重要意义^[1-2],在未来化学能源方面正显示出巨大前景^[8-4]。自从美国西尔兹湖卤水开始生产锂盐^[5]后,从盐卤中提取锂盐的研究一直受到人们的注意^[6-6]。

我国某硫酸镁亚型盐湖卤水日晒浓缩到氯化镁共饱和时,溶液中约含 1%LiCl^[10]。 再经冷冻蒸发即可获得含 6~7% LiCl 的氯化镁饱和卤水^[11]。 为把氯化氢引进浓盐溶液分离锂、镁氯化物,我们在对 H⁺、Li⁺、Mg⁺//Cl⁻ − H₂O 四元水 盐体系 0°C 等温相图^[12]进行工艺解析的基础上,拟定了 利 用氯化氢盐析氯化镁提取氯化锂的工艺。实验表明:工艺路线的设计是可行的,锂、镁分离效果良好,锂收率较高,产品质量满意。 并具有处理物料量小,原材料消耗 少等特点。

一、相图工艺解析

H[†]、L[†]₁、M^{*}₈ || Cl⁻-H₂O 四元水盐体系 0°C等温图如图一所示。图中有五个结晶区:一水 氯 化 锂 (LiCl·H₂O),二水氯 化 锂 (LiCl·2H₂O),水氯镁石(MgCl₂·6H₂O),锂光卤石(LiCl·MgCl₂·7H₂O),氢光卤石(HCl·MgCl₂·7H₂O)。其中 以水 氯镁 石结晶区域为最大(约占图面积的一半),氢光卤石结晶区域次之(约占四分一),一水氯化锂结晶区域最小。各结晶区之间为以下共结晶线所分隔:

A I - LiCl·MgCl₂·7H₂O + LiCl·2H₂O;

 $B \coprod -LiCl \cdot MgCl_2 \cdot 7H_2O + MgCl_2 \cdot 6H_2O;$

 $P II - HCl \cdot MgCl_2 \cdot 7H_2O + MgCl_2 \cdot 6H_2O$;

 $I \coprod -LiCl \cdot MgCl_2 \cdot 7H_2O + HCl \cdot MgCl_2 \cdot 7H_2O_3$

 $I \coprod -HC1 \cdot M_gC1_2 \cdot 7H_2O + LiC1 \cdot 2H_2O_3$

 $T \coprod -LiCl \cdot 2H_2O + LiCl \cdot H_2O$

 $J \coprod -HCl \cdot MgCl_2 \cdot 7H_2O + LiCl \cdot H_2O_0$

点Ⅰ、Ⅱ、Ⅲ分别相应于以下转变过程:

点 I, $HCl \cdot MgCl_2 \cdot 7H_2O + LiCl \cdot 2H_2O \rightleftharpoons LiCl \cdot MgCl_2 \cdot 7H_2O + L_{11}$

点 [[, $LiCl \cdot MgCl_2 \cdot 7H_2O + HCl \cdot MgCl_2 \cdot 7H_2O \Longrightarrow MgCl_2 \cdot 6H_2O + L_{11}]$

点Ⅲ, HC1·MgCl2·7H2O+LiCl·2H2O⇒LiCl·H2O+LIII.

P Ⅱ线相应于以下转变过程:

 $MgCl_2 \cdot 6H_2O + HCl + H_2O \Longrightarrow HCl \cdot MgCl_2 \cdot 7H_2O$.

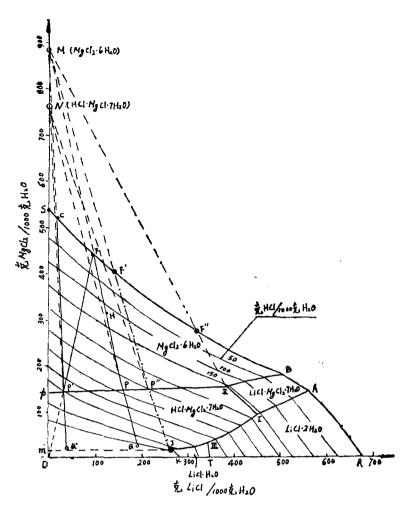


图 1 H⁺、Li⁺、Mg⁺ /Cl⁻ - H₂O 0℃ 等温图及工艺解析

图中虚线 mJK 表示气相 HCl 分压近于 外压时的界线(随 HCl 饱和溶液气相分压不 同而略有改变)。

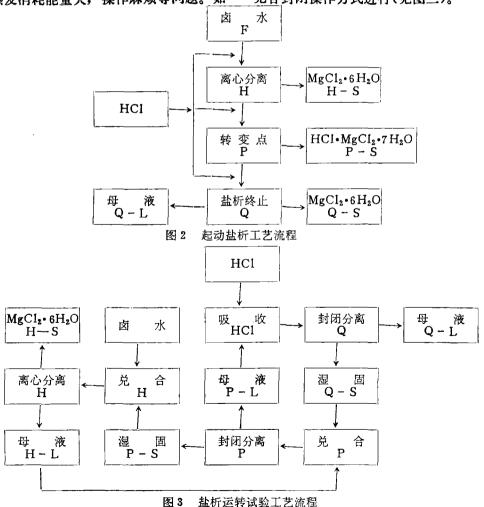
虚线 MF′P″J 把水氯镁石和氢 光 卤 石结晶区分割为两部份。组成点位于该线左边 $L_iCl-MgCl_2-H_2O$ 三元水盐 体系溶 解度 曲线上含氯化锂的氯化镁饱和溶液,在 $0^{\circ}C$ 条件下吸收 HCl 盐析MgCl₂· $6H_2O$ 和 HCl·MgCl₂· $7H_2O$ 的过程中, L_iCl 并不以 固体 盐形式析出。反之。位于该线右边和 M II 线 左边的含氯化 锂的氯 化镁饱 和溶液 在吸收 HCl 盐析 HCl·MgCl₂· $7H_2O$ 的后期,氯化 锂将会以 L_iCl · H_2O 或 L_iCl · $2H_2O$ 形式析 出。如果含氯化锂的氯化镁饱溶液组成点位于 M II 连线的右边, 只需吸 收少量的 HCl

盐析 $MgCl \cdot 6H_2O$ 即 可 析出 $LiCl \cdot MgCl_2$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 7 H_2O 。为了在不析出固体锂盐的 情况 下进行锂镁氯化物的分离,起始溶液中氯化锂含量以不超过 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 为官。

以某盐湖自然日晒浓缩盐卤经脱除硼、硫酸根 净化 处理 后得 到含 1.0% LiCl (即 15.2克/1000 克 H₂O) 和 33.0% MgCl₂ (即 500克 MgCl₂/1000 克H₂O) 的浓盐溶液为例 (如图一中 C 点)。在 0°C 条件下逐步吸收于燥HCl,同时盐析出 MgCl₂·6H₂O 固相。当溶液组成点达到相转变线 P II 时,进行固液分离。这时氢光卤石饱和溶液组成点为 P′。进一步吸收 HCl,盐析出氢光卤石固相(HCl·MgCl₂·7H₂O),一直到 HCl 在液 相 中达到饱和(如图一中 Q′点)。此 时 溶液中含

HCl 35%, $MgCl_2$ 0.5%, LiCl 1.7%。 溶液中 L₁Cl 的含量仍然较小, 提取锂盐还需要进行大量蒸发工作, 除去 HCl 及 水 份。

如将上述到达 P'点组成的 溶液 进行蒸发除去 HCl 及水份可以得到组成为 F 的溶液(见图一的F点)。由 F点再在0℃条件下吸收 HCl 盐析出 MgCl₂·6H₂O,溶 液组成到P II线的 P点时分离固相。母液继续吸收HCl 盐析出 HCl·MgCl₂·7H₂O,直至溶液中HCl 达到饱和,进行固液分离。此时溶液组成点为Q。其中 MgCl₂含量与上述Q′点溶液中 MgCl₂的含量相近。而溶液中LiCl 的含量却增加了数倍。


由上述相图分析结果来看, 含 LiCl 低的卤水利用该法提取锂盐存在着处理物料量大,蒸发消耗能量大,操作麻烦等问题。如

采用高含量 LiCl 的卤水,即组成点处在 F′ 左边靠近 F′的卤水作为起始物料将会 有 助 于克服上述缺点。

我国某盐湖卤水盐田日晒场冷冻蒸发工作的研究结果[11]表明,可以获得含 LiCl 6%以上的氯化镁饱和卤水,给该法提供了较有利的条件。

二、实验流程和装置

实验流程,在盐析部分,通过对 HC1 - LiC1 - MgCl₂ - H₂O 四元水盐体系 0℃等温相图的工艺解析。为减少 HC1 的消耗量,提高 LiC1 的收率以及便于操作起见,我们 在单程起动盐析的基础上(如图二),采取 HC1 的吸收只集中在氢光卤石析出阶段。其余用兑合封闭操作方式进行(见图三)。

和运转实验工艺流程分别进行。

由实验用原料卤 水的 组成, 按 HC1- 示,

盐析工艺计算按单程起动盐析工艺流程 LiCl-MgCl,-H₂O 四元 水 盐体 系 0℃ 等 温相图拟出各操作控制点 的组 成如 表一所

表 1

盐析工艺中各操作控制点组成

£	分 、 含	液 相 组 成							对 应 固 相	备	注
操 作	重 量 %				克/1000 克水			N 12 El 16	H	Œ	
符号	说明	HC1	LiC1	Mg Cl ₂	H ₂ O	HCI	LiCl	$MgCl_2$			
F	原始卤水		6.24	28.61	65.15		95.8	439.1	MgCl ₂ •6H ₂ O	分析	结 果
Н	排出固相	2.7	8.8	18.2	64.0	135.3	136.8	283.0	$MgCl_2 \cdot 6H_2O$	由相图	人为确定
Р	氢 光 卤石 饱 和	12.4	10.3	9.1	62.2	295.8	165. 6	146.3	MgCl ₂ •6H ₂ O + HCl•MgCl ₂ •7H ₂ O	相图	査 得
Q	排出母液	32.9	11.1	0.7	ö5 ∙ 3	594.9	200.7	12.6	HC1•MgCl ₂ •7H ₂ O	相图	查 得

(1)起动盐析(按图二安排进行)

HCl 到达离心分离固相排出点H,分离排出 (1)起动盐析(按图二安排进行) HCI 到达离心分离固相排出点日,分离排出从原始卤水(F)开始,在 0°C 时 吸 收 $MgCl_2 \cdot 6H_2O$ 固体量的计算按下式进行:

F(卤水)+HCl→H₁(溶液)+H₂(MgCl₂·6H₂O)

列出物料平衡方程(单位以克计)。

$$100 \begin{cases} MgCl_2 & 28.61\% \\ LiCl & 6.24\% + X_{HGl} = Y \\ H_2O & 65.15\% \end{cases} + W \begin{cases} MgCl_2 & 18.2\% \\ LiCl & 8.8\% \\ HCl & 8.7\% \\ H_2O & 64.3\% \end{cases}$$

联解各组份物料平衡方程得:

 $X_{HCI} = 6.0 \, \hat{g}$, $Y_{MgCl_2 \cdot 6H_2 \cdot O} = 34 \, \hat{g}$. $W_{HL} = 71 \, \hat{g}$. 用上述类似计算方法, 求得其余两个阶段的物料量如下,

$$H_L(溶液) + HCl \xrightarrow{0 \circ \mathbb{C}} P_L(溶液) + P_s(MgCl_2 \cdot 6H_2O)$$

71 克 5 克 61 克 16 克

$$P_L(溶液) + HCI \xrightarrow{0 \circ \mathbb{C}} Q_L(溶液) + Q_s(HCI \cdot MgCI_2 \cdot 7H_2O)$$

61 克 9 克 57 克 14克

(2)盐析运转实验(按图三安排进行)

按类似起动盐析的计算方法, 求得各阶段的物料量如下:

$$P_L$$
 + HCl $\xrightarrow{0^{\circ}C}$ Q_L + Q_s (200-77-)123克 18克 113克 27克

计算结果表明,在理想分离条件下, 开始以 100 克原始卤水(F)计,吸收 18 克 HCl,可以分离排出 61 克 $MgCl_2 \cdot 6H_2O$ 固 体,得到盐析终止排出母液(113-57 =)56克。 整个氯化氢盐析氯化镁提取氯化锂实验 流程安排如图四所示。

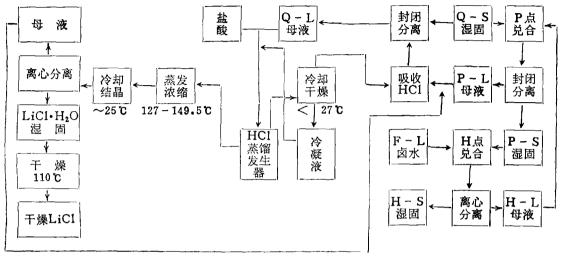


图 4 HCl 盐析 MgCl2·6H2O 提取 LiCl工艺流程示意图

实验装置

干燥氯化氢的发生装置,使用化学纯试剂氯化锂 (LiCl·H₂O) 按萃取蒸馏法^[18]发生干燥氯化氢。100克LiCl·H₂O在80~90℃条件下与50毫升浓盐酸作用发生氯化氢气体经自来水(低于20℃)冷凝干燥后供吸收用。发生氯化氢结束后以减压蒸发方式除去残存氯化氢。继续进行蒸发浓缩除去多余水份后以备再用。示意装置如图五。

半导体低温恒温制冷器,如图六所示, 主要由硅整流器、半导体制冷器和温度恒温 控制器三部份组成。

氯化氢吸收盐析装置,用容积一立升的 广口瓶,塞子是三孔的橡皮塞,分别插入氯 化氢导气管(下端埋入溶液),温度计和尾气 排出管。吸收瓶置于低温恒温器内的冷剂酒 精中。

封闭分离装置。在盐析反应瓶上换用双孔橡皮塞,其中一孔插入2*(或1*)玻璃砂芯过滤管(底部插到分离液面下),用以进行液

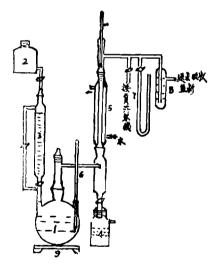


图 5 干燥 HCl 发生装置示意图 1.HCl发生器, 2.盐酸贮料瓶, 3.盐酸加料器, 4.冷凝液收集瓶, 5.冷凝管, 6、10 温度计, 7.压力计, 8.硫酸干燥管, 9.电炉(调压器控制)。

固分离。管的上端与液体接受瓶连接。另一 孔插人具有玻璃倒向开关的三通管,与100 毫升针筒连接,用以进行加压封闭操作。示 意装置如图六。

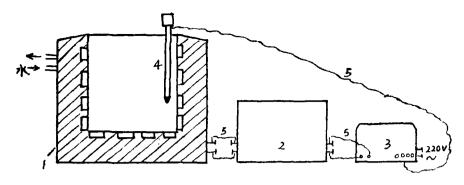
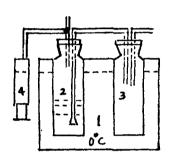



图 6 半导体低温恒温制冷器示意图 1.半导体制冷器, 2.电源整流器, 3.电子管恒温控制器, 4.电接点水银温度计 5.连接电线。

离心机,转鼓直径为15公分、高12公分,不锈钢制,与涂料液接触处涂耐酸漆,转速1000转/分。

图六 封闭分离装置 1.半导体制冷器内盛酒精, 2.盐析吸收瓶, 3.液体接收瓶, 4.针管。

三、实验用卤水的制备

本实验用卤水是某盐湖地表湖水,经盐田日晒浓缩到氯化镁饱和,加入盐酸析除硼酸^[14],再经自然冷冻蒸发 得到 组 成 为: 6.6%LiCl、26.54%MgCl₂、0.67%MgSO₄、2.34%MgB₄O₇、以及约0.15%NaCl、0.1%KCl的卤水。再次加入盐酸析除硼酸,用活性氧化镁进一步除去少量的硼(除硼后 溶液含B₂O₃ 0.05%)。用活性炭脱色。蒸发浓缩并冷却到 0 $^{\circ}$ C 即得氯化镁饱和的实 验 用 卤水。组成为:LiCl6.24%、MgCl₂28.61%、MgB₄O₇0.1%。

四、实验步骤

实验分三段进行:

1. 吸收氯化氢盐析分离锂镁

按照工艺计算结果拟定运转实验中的每次投料量为500克,起动盐析实验中取用2000克卤水。在0℃条件下吸收HC1到H点(溶液中含8%±0.5HC1,用酸度控制分析确定,下均同)时,在室温条件下进行离心分离(滤布用维尼纶)。固体经称量,混匀后取样分析,编号为H-S-O。液体分析样编号为H-L-O。

H-L-O母液在0℃条件下继续吸收HCl到P点(溶液含18%±0.5HCl)时,在0℃进行封闭分离。分出的液体量由计算事先给定。取液样分析,编号为P-L-O。P点湿固体(P-S-O)用F卤水进行兑合得H点物料,混匀后放置半小时,在室温下离心分离。固液体经计量,取样分析,编号分别为H-S-I和H-L-I。

P点母液(P-L-O)在 0°C 条件下继 续吸收HCl到Q点(溶液含34%±1HCl)时, 于该温度下封闭分离。分出的液体量由计算 事先给定。液体取样分析,编号为Q-L-O。其余液体供蒸馏回收 HCl 后浓 缩 结 晶 制取氯化锂用。

Q-S-O湿固体与H点滤液兑合得P

点物料。混匀后放置半小时,进行封闭分离。 分出的液体量由事先计算给定。取液样分析。 编号为P-L-I。 P点湿固体(P-S-I) 用F卤水兑合得H点物料。P-L-I母液吸收HCl到Q点,然后封闭分离。实验依此循环进行。如图七所示。

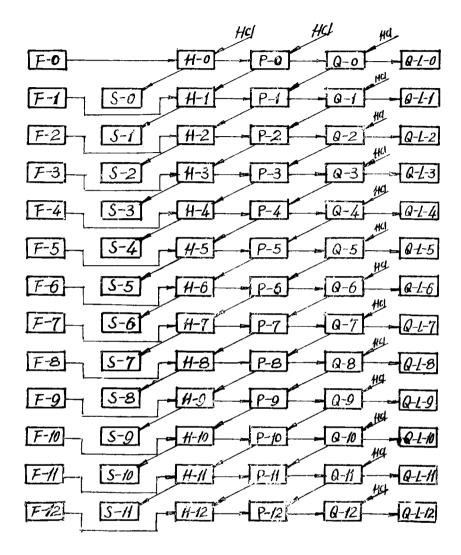


图 7 盐析运转实验安排

2.蒸馏回收 HCI

将Q点的过滤母液计量后转 入 蒸 馏 瓶 内, Q点母液每转三批累积进行一次蒸馏试验。用调压变压器控制电炉加热温度。蒸出的 HC1 气体经冷凝(用自来水或冰水 冷 却) 干燥后供给 HC1 吸收系统。在蒸馏过 程 中当出现冷凝液后用小容量瓶定量收集。直到浓缩液中 LiC1 含量在室温下近于饱和为 止

(根据不同温度下 LiCl 的溶解度曲线 和不同 LiCl 含量溶液的沸点曲线如图八、九^[18],由溶液的沸点来控制)。浓缩液称量后,取液样分析,编号E-L。

冷凝液用已知浓度的 NaOH 溶液滴定, 计算收集液中HCl含量。

3.蒸发结晶制取氫化锂

蒸馏回收 HC1 后的浓缩液经计 量 后合

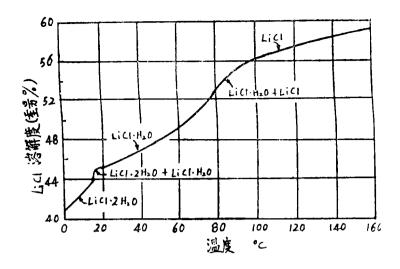


图 8 不同温度下 LiCl 溶解度

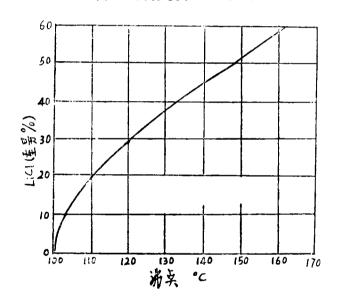


图 9 不同 LiCl 含量溶液的沸点。

并一起置于烧杯内,用电炉加热蒸发浓缩。 待蒸失一定量水份后,冷却结晶。在室温下 用真空泵或离心机进行固液分离。计量后, 取样分析。固液编号为D-S和D-L。所 得湿固体(LiCl·H₂O),在 110° C 左右烘干 即得 LiCl 产品。

分离氯化锂后的母液可返回到工艺过程 中循环使用。

实验中控制分析取 1~2 滴溶液(盛样容器先放入少量水并称其重量),准确称量后,

用标准 NaOH 溶液滴定到酚酞呈微红色。其他固液样分析按"卤水和盐的分析方法" [15]中的下述方法进行。

H+一酸碱滴定。

C1-一硝酸汞容量滴定。

Li⁺一火焰光度法。

Mg⁺-加入10毫米1:10正丁醇和乙醇 混合液进行氨羧络合滴定。所有Q-L样中的Mg用原子吸收分光光度法进行测定。

五、结果讨论

1.实验结果(表二)表明, 盐析排出液中 氯化锂含量比单程盐析实验结果偏低, 使得 运转实验过程中的平均盐析线与HC1-LiCl-MgCl₂-H₂O 四元水盐体系0℃等温 相图预示的结果略有偏离(见图十)。这是由 干实验中 HCl 发生器操作温度 高于 90℃,

自来水冷却效果差,未达到冷凝干燥目的, 致使HCI 气中带人少量水份。

2.从表二中所列结果可见,在第三次运 转实验吸收 HCl盐析过程中。由于 HCl 发 生器操作偶然失调(停电),发生器系统出现 负压, 造成尾气吸收瓶内的溶液返回到试验 吸收瓶内, 出现明显稀释。 致使Q一L-3 和Q-L-4排出液中LiCl含量骤然下降, 经多次运转试验后才逐渐恢复。

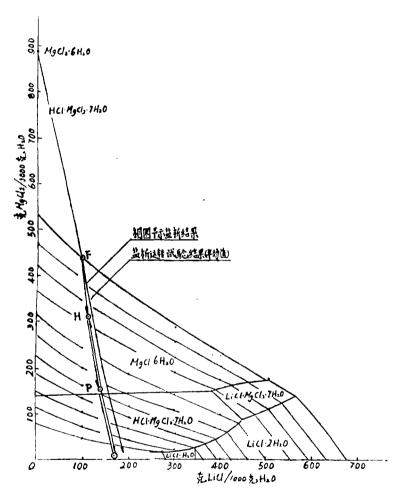


图10 HCl 盐析分离锂镁运转试验结果

- 3.从蒸馏回收 HCl 试验 结 果(表 三 可 见), 盐析排出液Q一L中的 HCl 可以干燥 HCI 和蒸馏冷凝液的形式回收,其量大约各 为一半。干燥 HC1 可直接再用, 冷凝液 可 返到 HCl 发生器内供发生干燥 HCl 用。
 - 4. 把蒸馏 HC1 后的溶液继续蒸发 浓 缩

到149.5±0.5℃,趁热过滤(保持溶液 温 度 不低于100℃), 滤液冷却到常温(约25℃) 结晶出 LiCl·H₂O。分离 得 锂 盐 产 品 (含 94.3% LiCl·H₂O), 在115℃烘干得无水氯 化锂产品(含 LiCl 99.6%)。结果列于表 四.

试	进			Н		 分		ī	当		点			
验	料量				H - L				H - S					
序	F	1	化 合	物 组重量%)	成	相克	图 指 /1000克	数 [水	排出量	带失 母液	化	合(重	物 组 量%)	成
号	克	нсі	LiCI	MgCl ₂	H₂O	нсі	LiCi	MgCl ₂	\sim	(%)	нсі	LiCl	MgCl₂	H ₂ O
0	2295	7.60	7.21	21.66	63.53	119.6	113.5	340.9	575	9.4	0.29	0.68	44.21	54.82
1	1070	7.94	7.39	20.25	63.42	125.2	116.5	319.3	606	9.9	0.51	0.73	43.70	55.06
2	500	8.86	7.33	20.01	63.80	138.9	114.9	313.6	246	13.3	0.61	0.98	42.90	55.51
3	500	8.51	7.15	20.32	64.02	132.9	111.7	317.4	225	13.7	0.68	0.98	42.92	55.42
4	500	7.60	6.96	21.40	64.04	118.7	108.7	334.2	306	14.1	0.58	0.98	43.34	55.10
5	500	9.51	6.54	19.04	64.91	146.5	100.8	293.3	375	11.2	0.79	0.73	43.20	55.28
6	500	9.05	6.35	19.90	64.70	139.9	98.2	307.6	244	11.5	0.62	0.73	43.32	55 .3 3
7	50 0	9.27	6.35	19.74	64.64	143.4	98.6	305.4	261	13.5	0.88	0.86	42.80	55.46
8	500	8.22	6.63	20.83	64.42	127.6	102.9	323.3	306	11.2	0.46	0.74	43.86	54.94
9	500	8.04	6.72	21.42	63.82	126.0	105.3	335.6	314	15.5	0.73	1.04	42.80	55.43
10	50 0	9.52	7.27	19.22	63.99	148.8	113.6	300.4	401	12.4	0.82	J.90	43.31	54.97
11	500	10.35	7.61	18.44	62.60	165.3	121.6	294.6	323	12.4	0.73	0.94	42.92	55.41
12	503	10.07	7.50	19.35	63.08	159.6	118.9	306.8	277	12.5	0.69	0.94	43.23	55.14
* ∓	均值	9.47	7.27	19.72	63.54	149.0	114.4	130.4	!	12.0				

P - L

Q - L

													·	
化	合 : (重:	物 组 量%)	成	指 克	指 图 相 数 克/1000克水			化 合 物 组 成 (重量%)				相 图 指 数 克/1000克水		
HCI	LiCl	MgCl ₂	H₂O	нсі	LiCI	MgCl ₂	量(克)	нсі	LiCl	MgCl ₂	H ₂ O	HCI	LiCI	MgCl ₂
18.67	9.71	9.05	62.57	298.4	155.2	144.6	199	35.09	9.47	0.39	55.05	637.4	172.4	6.7
18.45	9.10	9 .9 5	62.50	295.2	145.6	159.2	243	34.48	9.47	0.43	56.05	530.1	169.0	7.7
18.38	_	11.24					251	35.51	9.71	0.39	54.39	652.9	178.5	7.3
18.23	_	10.15	_	_			330	39.18	7.33	0.43	56.06	645.4	130.8	7.7
ı	_		_	_	_		297	36.90	7.76	0.33	55.01	670.8	141.1	6.0
19.54	7.82	9.33	63.31	308.6	123.5	147.4	248	35.81	8.49	0.38	51.90	690.0	163.6	7.3
18.81	7.70	10.22	63.27	297.3	121.7	161.5	317	35.45	8.49	0.36	55.70	636.4	152.4	6.5
17.73	8.02	10.96	63.29	280.1	126.7	173.2	299	34.00	9.09	0.42	56.49	601.9	160.9	7.4
18.81	8.31	9.99	62.89	299.1	132.1	158.8	299	35.45	8.97	0.37	55.21	642.1	162.5	6.7
19.22	8.54	9.63	62.61	307.0	136.4	153.8	250	33.71	6.58	0.48	56.23	5 99. 5	170.4	8.5
19.12	8.76	8.85	63.27	302.3	138.5	139.9	253	35.59	9.60	0.27	5 4. 54	652.5	176.0	5.0
19.72	8.97	9.57	61.72	319.5	145.3	155.4	309	35.35	9 .17	0.30	55.18	640.6	166.2	5.4
18.90	3. 75	10.04	62.31	303.3	140.4	161.1	277	35.36	9.69	0.33	54.62	647.4	177.4	6.0
19.24	8.76	9.53	62.47	308.0	140.2	152.6		35.03	9.50	0.37	55.10	635.7	172.4	6.7

注: (1)平均值: 按运转稳定后的 9 —12*结果加权法求得,排出固体带失母液量按 0 —12*

⁽²⁾F-L: 0-12*进料总量887)克,组成(重量%)。LiCl 6.24, MgCl 28.61, H₂O 65.15,换算为相图指数(克/1000克水)。LiCl 95.8, MgCl₂ 439.1。
(3)Q-L: 0-12*排出料总量3572克。
(4)H-S: 0-12*排出料总量4453克。

蒸		馏	总重	HC1			蒸馏	出H2O		34-
X	段	温度℃	(克)	含量 (%)	重量 (克)	分 布 (重量%)	(克)	占进料量 的(%)	备	注
气相	回收	室温~90°	137	97.6	133.7	46.1	3.3		进料液:	
冷凝液	回收	90~127	478	31.8	152.1	53.1	325.9			833 克
残 留	液		218	0.35	0.8	0.3			组成:	HCl 34.4% LiCl 9.0%
合	计		833		286.6		329.2	39.5		MgCl ₂ 0.42%

蒸发结晶试验结果

		蒸 发 液 (温度127~1	牧 缩 49•5℃)	热 (温度	过 100~1		冷却结晶分 (冷却到26	}离 ℃)	备	 注
进料量(克)		. 565		417.5		393				
出	料	蒸失水 重量 占料液 (克) (%)	母液量 (克)	滤 重量 (克)	造 占料液 (%)	母液 重量 (克)	湿 固 体 (LiCl•H ₂ O) (克)	母液(克)	滤渣可能是 Li ₂ SO ₄ •H 未分析鉴定	È.
		147.5 26.1	417.5	24.5	5.87	393	124.2	265.2	结晶分离损失 克	₹3.6

5.本试验中 HCl 构成封闭循环(只需补充部分损失)。输入物料只有实验用 卤 水。排出物 料有 MgCl₂·6H₂O、LiCl·H₂O 和 水

份。锂的损失主要是 离 心 排 出的 $MgCl_2$ · $6H_2O$ 固体附着的母液引起的。 可用下式计算 LiCl 收率:

$$LiCl 收率(%) = \frac{\sum_{i=0}^{n} W_{F-i} \cdot C_{F-i} - \sum_{i=0}^{n} W_{S-i} \cdot C_{S-i} - A}{\sum_{i=0}^{n} W_{F-i} \cdot C_{F-i} - A} \times 100$$

式中, W_{F-i} i 次试验用F卤水量(克)。

C_{F-i} — F 卤水中 LiCl 的重量百分 含量。

C_{s-i}----MgCl₂·6H₂O 固体 中 LiCl 重量百分含量。

A —— 留存在试验过程中 的 LiCl 总量(克)。

结果为89.0%。

试验结果证明了盐析分离原 理 是 正 确 的, 盐析工艺安排是合理可行的, 锂镁氯化 物分离效果良好。

本试验全流程封闭循环试验尚待进行。 卤水净化使用活性氧化镁除硼过程中锂盐带 失过多,需进一步研究解决。 $HC1-LiC1-MgC1_2-H_2O$ 四元水盐体系的低温工作以及有关的气、液、固相平衡的研究需相应予以补充。

利用 HCl 盐析法制取锂光卤石 (LiCl·MgCl₂·7H₂O)产品,经脱水后进行熔 融 电解^[16]。在获得金属镁的基础上, 制 取金属锂或其他锂化合物,可能会更合理易行。

参考文献

[1]高世扬, 锂及其化合物的用途,《化学通报》第10期: 41~43页(1964)。

[2]盐湖所情报室,锂及其化合物的用途,<盐湖科技资料>第三辑51~58页(1972)。

[3] Chilenskas, A. A.; Bernstein, G. J., Ivins, R. O. (Argonne Natl. Lab. Argonne III)

Geol. Surv. prof. pap. (U. S.) 1976, 1005, 5-9(Eng), C. A. 86, (1977) 14288 v.

[4] Cooper, J. F., Borg, I. Y., O'Connell, I. G., Behrin, E., Rubin, B., Wiesner, H. J., (Lawrance Livemoce Lab, Univ., California)

Geol. Surv. prof. pap. (U. S.), 1976, 1005, 9-12(Eng) C. A. 86, (1977) 142889 w.

[5]Ю. и. остроуиско и др. "Литий его Химия и Технология" (1960), Атомиздат. Москва. 111~113 С.

[6] Chem. Eng., August 15, (1966), 86~88

«Chem. Eng. News», 44, No 32, (1966), 38~40.

[7]盐湖所五室四组,煅烧法提取碳酸锂——从某盐湖的饱和氯化镁卤水中提锂小实验报告,《盐湖科技资料》,(1974),1—2辑,12—31页。

[8]胡克源、程祖良等,自卤水中直接 提取锂盐的新工艺方法,《科学技术研究成 果报告》国家科委出版,(1965)。

[9]中国科学院上海有机所,从氯化镁饱和溶液中萃取锂的初步研究, <盐湖 科 技资料»,(1975)2—3辑,1—21页。

[10]高世扬、张济仁等,大柴旦盐湖日晒扩大试验,《科学技术研究成果报告》,(1965),国家科委出版。

[11]盐湖所四室一组,利用自然能处理 某盐湖卤水和锂钠富集,《盐湖科技资料》, (1975),4 辑 1 —17页。

[12]胡克源、柴文琦: 四元水盐 体 系 H⁺,Li⁺,Mg⁺//Cl⁻-H₂O 中 0℃ 时 相 平 衡 的研究, 《化学学报》, 31, No 3, (1965), 189—198页。

[13]U. S. Patent,3.763.019,(1973) [14]天津化工研究院,大柴旦盐湖饱和 氯化镁卤水的综合利用,《科学技术研究 成 果报告》,(1965),国家科委出版。

[15]中国科学院青海盐湖研究所,《卤水和盐的分析方法》,(1972)科学出版社。

[16] Modern Metal, No.6, 1970, 26.