二磷酸氢钛的加压合成及对锂 同位素的分离效应

韩素伟 李纪泽

(中国科学院盐湖研究所,西宁 810008)

摘 要 用无定型磷酸钛和磷酸在 175℃,约 3MPa 气压下,合成的晶形细微化合物,即二水合二磷酸氢钛[TI(HPO₄)₂,2H₂O],是一种层状结构的无机离子交换剂. 在酸性和中性介质中其溶解度极小,对于钾、锂碱金属离子具有很好的交换吸附效应. 以聚丙烯腈的二甲基甲酰胺溶液为粘合剂,压制成型,装制成色谱柱,以 LiNO₃溶液为原料,HCl 为洗脱剂,合理截取洗脱流分并测得⁶ Li 和 7Li的单级分离因数为 1.023,获得了文献中尚未报道过的结果.

关键词 二磷酸氢钛 锂同位素 色谱柱

80年代初,我们在小林悦郎^[1]的实验基础上,用回流法合成了二水合、一水合、半水合及无水的二磷酸氢钛的系列化合物 Ti (HPO₄)₂·nH₂O^[2,3],并首先发现其中半水合物 Ti (HPO₄)₂·0.5H₂O对锂同位素的分离效应. 其单级分离因数为 1.018. 之后,与兰州大学合作,进行了半水合物的传质研究^[4]. 结果发现其传质速度比 001×20 的聚苯乙烯凝胶磺酸型阳离子交换树脂快 3.5 倍. 该系列化合物中的二水、一水合物,也有分离锂同位素的效应,只是其分离因数比半水合物要小得多(1.008~1.005). 为改变其结构,试图提高其分离因数和改变其物理化学性能,本实验用加压合成法,采用造粒成型制成色谱固定相,装成色谱柱,开展了用离子交换色谱柱测定锂同位素分离因数的研究.

实验

1 试剂与仪器

试剂:四氯化钛,磷酸(AR),盐酸,硝酸锂,氢氧化锂,氯化钾,氢氧化钾(GR).

仪器:VG-354 质谱仪,ARL-3520ICP 光谱仪,PE4000 型原子吸收分光光度计,LD4-2型离心机.

2 试验方法

2.1 二磷酸钛的合成

二磷酸钛二水合物,即Ti(HPO₄)₂·2H₂O(简称TIP·2H₂O),是将无定型磷酸钛(ATP)置入高压坩锅内,并加入磷酸,密封,加热(175℃)反应若干小时,之后用离心机分离。固相洗涤至中性,在P₂O₅干燥器中干燥 24 小时后进行化学组分测定(ARL-3520 ICP光谱仪),固相分别进行 X一射线衍射,红外光谱,差热,热重等鉴定。

2.2 TIP • 2H₂O 成型和制柱

用聚丙烯腈的二甲基甲酰胺溶液将微晶TIP·2H₂O粘结并压制成Ø1mm的颗粒,干燥. 之 后将TIP·2H₂O用水调制成悬浮体,装入柱中,备用.

2.3 转型、交换和洗脱

将制成的色谱柱,用 0.15N 的 HCl 溶液流经柱内,两小时后(流速为25ml/h)用二次蒸馏 水洗涤至弱酸性或中性(pH=5~7). 用 0.15N 的LiNO₃溶液在25±0.5℃的温度条件下,流速 控制在15ml/h,按每 10ml 截取流分,测定锂含量. 用 0.15N 的 HCl 溶液作为洗脱剂,其洗脱条 件同交换操作.

结果与讨论

1 合成产物的确定

用 ATP 为原料,在 H₃PO₄ 浓度为10.4-14.6M,反应时间为5-35h,反应温度为175℃,压 力为?**1Pa气压的条件下,其产物的化学组成均相似(见表 1),按P₂O₅: TiO₂: H₂O的摩尔比,都 表明是二水合物,即TIP·2H₂O.

	化合物组成(%)						
编号	P ₂ O ₅	TiO ₂	H ₂ O	P ₂ O ₅	TiO ₂	H ₂ O	- 分子式
1-1	55.70	30.71	13. 59	1.00	0.98	1.90	TIP • 2H₂O
1-2	54.48	31. 13	14.39	1.00	1.02	2.08	TIP • 2H ₂ O
1-3	55.74	27.38	16.88	1.00	0.89	2.44	TIP • 2H₂O
2-4	55.63	30.17	14.20	1.00	0.96	2.01	TIP • 2H ₂ O
2-5	56.83	29.84	13.33	1.00	0.93	1.90	TIP • 2H ₂ O
3-6	56.64	29.74	13.62	1.00	0.93	1.90	TIP • 2H ₂ G
3-7	54.00	29.53	16.47	1.00	0.97	2.40	TIP • 2H ₂ O
4-8	54.09	30.25	15 . 66	1.00	0.99	2. 28	TIP • 2H ₂ O
4-9	57.06	29.96	12.98	1.00	0.93	1.79	TIP • 2H₂O

表 1 合成产物组成

表 2 TIP·2H₂O 对钾离子的交换容量

编号	KCl(ml)	KOH(ml)	溶液的 pH 值	交换容量(meq/g)
1	25. 0	0.0	0.13	2. 23
2	20.0	5.0	1. 25	4.50
3	15.0	10.5	3. 28	7.65
4	12.5	12.5	4.10	8.68
5	8.0	17.5	4.54	9. 21
6	4.0	21.0	4. 29	10.51

合成产物的 X-射线衍射图谱(图 1)给出了全部样品的衍射值。结果表明,所有的晶体都 有二个强衍射峰. 而且和一水合物的强衍射值相等. 按照G. Alberti等人的观点[5],二磷酸氢钛 的无水、一水和二水合物都是层状结构的化合物,其层间距依次为9.1Å、9.2Å、7.6Å和 11.8 Å. 由此推断在3MPa气压下合成的二水合物的层间距,缩短为7.6 Å,和一水合物的层间 距相等.

TIP·2H₂O的差热和热重分析图谱还表明,在275℃时失去全部的水,失水率为13.70% (TIP·2H₂O含水量计算值为13.05%). 这就证明了本实验合成产物为二水合物.

2. 离子交换性能

表 2 表明,在 3MPa 气压下合成的TIP·2H₂O,对钾离子的交换容量在偏酸性介质中可达, 10 meq/g,比常压下回流法合成的对钾离子交换容量大而著称的TIP·2H₂O(4 meq/g),要高出 1.5 倍. 这足以说明它具有优良的离子交换性能,其中对锂也是如此(见表 3).

•	. 人。						
编号	LiNO ₃ (ml)	LiOH(ml)	溶液的 pH 值	交换容量(meq/g)			
1	25. 0	0.0	0.00	2. 35			
2	20.0	5.0	2,66	4.46			
3	15.0	10.0	5.02	7.42			
4	12.5	12.5	5.72	9.48			
5	7. 5	17.5	8.47	9.76			
6	5.0	20.0	12.48	10. 14			

表 3 TIP·2H₂O 对钾离子的交换容量

3 锂同位素的分离性能

锂同位素的分离实验,是在内装TIP・2H₂O粒状固定相,长为20cm,直径为1cm的色谱柱中进行的.流动相中的°Li和'Li浓度为0.15M.交换到固定相中的°Li和'Li浓度,前者大于后者.其化学交换平衡式为:

$$\begin{bmatrix} {}^{6}\text{Li} \end{bmatrix} + \begin{bmatrix} {}^{7}\text{Li} \cdot \text{TIP} \cdot 2\text{H}_{2}\text{O} \end{bmatrix} \Longrightarrow \begin{bmatrix} {}^{7}\text{Li} \end{bmatrix} + \begin{bmatrix} {}^{6}\text{Li} \cdot \text{TIP} \cdot 2\text{H}_{2}\text{O} \end{bmatrix}$$
 (1)
流动相 固定相 流动相 固定相

当洗脱时,流动相中的°Li含量大于其交换过程中原料液内的浓度.

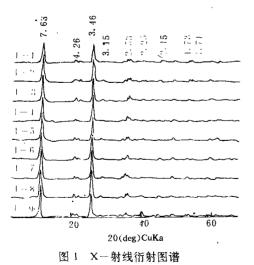
表征分离后锂同位素成分改变的分离因数 α 定义为:

$$\alpha = \frac{N_0/(1 - N_0)}{N(1 - N)} \tag{2}$$

式中分子表示分离前同位素的相对浓度,分母表示分离后的相对浓度.

(1)式可以改变为:

$$\alpha = \frac{\begin{bmatrix} {}^{6}\text{Li} \end{bmatrix}_{s} / \begin{bmatrix} {}^{7}\text{Li} \end{bmatrix}_{s}}{\begin{bmatrix} {}^{6}\text{Li} \end{bmatrix}_{l} / \begin{bmatrix} {}^{6}\text{Li} \end{bmatrix}_{l}} = \frac{\begin{bmatrix} {}^{7}\text{Li} \end{bmatrix}_{s} / \begin{bmatrix} {}^{6}\text{Li} \end{bmatrix}_{s}}{\begin{bmatrix} {}^{7}\text{Li} \end{bmatrix}_{s} / \begin{bmatrix} {}^{6}\text{Li} \end{bmatrix}_{s}}$$
(3)


式中[°Li]、['Li]、为°Li和'Li在流动相中的浓度,[°Li]。、['Li]。为°Li和'Li在固定相中的浓度.

令 R 代表原料液中[®]Li和[®]Li 的丰度比, R_n 为固定相中的丰度比,则(2)式可写成:

$$\alpha = \frac{R}{R} \tag{4}$$

式中 n 为分离级数. 因此,根据质谱仪测定的结果可直接计算出α值.

加压合成的二水合二磷酸氢钛[Ti(HPO₄)₂·2H₂O]用动态法在离子交换色谱柱内所测得的⁶Li和⁷Li单级分离因数为1.023(见表4).而且高分离因数区的溶液量占全部流出液的91.62%(见图2).锂同位素的二级分离因数测定实验结果列于表5.由表5可见,在本实验条件下,二级分离因数为1.038.高分离

因数区溶液流出量,占总流出量的88.90%(见图3的阴影部分).如上所述,加压合成法合成的

二水合二磷酸氢钛,比常压下合成的层间距(11.8Å)缩短了4.2Å.因此,压力下合成的二水合表4 Li+洗脱实验结果(单级)

编号	单流份(ml)	Li+ 浓度(mg/ml)Li+	流出量(mg)	'Li/'Li 丰度比	分离因数(α)
4-12	10	0. 021	0. 21	11.9495	1.009
4-13	10	0.369	3.90	11.7809	1.023
4-14	10	0.123	5. 13	11.7978	1.022
4-15	10	0.015	5. 28	11.9766	1.006
4-16	10	0.005	5. 33	_	
4-17_	10	0.004	5. 34		

表 5 Li+洗脱试验结果(二级)

编号	单流份(ml)	Li+ 浓度(mg/ml)Li+	流出量(mg)	7Li/6Li 丰度比	分离因数(α)
4-10	10	0.040	0.40	11.9334	1.010
4-11	10	0.085	1. 25	11.7524	1.025
4-12	10	0. 289	4.14	11.6087	1.038
4-13	10	0.314	7. 28	11,7807	1. 023
4-14	10	0.161	8. 89 [°]	11.8264	1.019
4-15	10	0.047	9.36	11.9722	1.007
4-16	10	0.015	9.46	11.9302	1.010
4-17	10	0.002	9.48	_	
4-18	10	0. 002	9.50	_	-

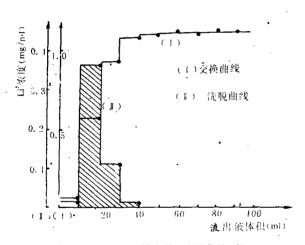


图 2 TIP•2H₂O 的交换、洗脱曲线(单级).

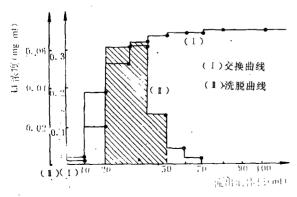


图 3 TIP・2H₂O 的交換、洗脱曲线(二级)

TIP·2H₂O,兼有一水合物TIP·H₂O的特性.同时,它的层间距又小于半水合物的层间距(9.2Å). 当水合离子通过孔层时,具有聚合大阴离子的Ti·n(PO₄)器—的二磷酸氢钛,通过与层间水分子相结合,形成具有负电性的不平衡电场,具有更强的捕获阳离子(K+、Li+)的能力. 所以它的交换容量显示出特有能力,从而提高了对钾和锂的交换容量.

分离°Li和'Li的内在机理在于:质量较大的'Li离子与水分子有较强的键合能力,而°Li离子则较容易地在不平衡电场中脱去水分子,进而交换到固定相上,在洗脱过程中使°Li同位素得到富集.

结 论 无定形磷酸钛和磷酸在 175 C,约2492KPa压力下,所合成的 $Ti(HPO_4)_2 \cdot 2H_2O$,是层状结构的晶体.其层间距为7.6 Å.它对Li+的交换容量高达4.18 ~ 5.03 meq/g.用离子交换色谱柱测定了对锂同位素的分离 因数,单级分离因数为1.023,二级分

离因数为 1.038,其高分离因数区溶液流出量分别占总流出量的91.6%和88.9%.在3MPa压力下合成的Ti(PO₄)₂·2H₂O性能,比常压下的合成物分离效果好,具有可喜的应用前景.

参考文献

- 1 Kobayashi, E. Bull. Chem. Soc. Jpn., 1975, 48(11);3114-19;1978, 52(5);1359-62
- 2 李纪泽、韩瑜,中国化学会无机化学第二届年会论文摘要汇编(上),A-1(1984)
- 3 李纪泽、王芝兰,第四届稳定同位素学术讨论会论文集(一),1984
- 4 岳廷盛、李纪泽,化学学报,1986,44(11):1167-71
- 5 Alberti, G. et al, J. Inorg. Nucl. Chem. 1979, 41,643-47

Synthesis of Titanium (N) Bis (hydrogenorthophosphate) hydrate and its Effect of Separation for Lithium Isotopes

Han Suwei and Li jize

(Institute of Salt Lakes, Academia Sinica, Xining 810008)

ABSTRACT

Ti (HPO₄)₂ • 2H₂O was prepared by the reaction of titanium phosphate with H₃PO₄ at 175°C about 2942 KPa, the solubility in the phosphate was remarkably low. It has a layer structure and a better effect of exchange and adsorption for the alkali metal ions. With polyacrylonitrile as inter carrier, adopting a method of manual press, we have changed Ti (HPO₄)₂ • 2H₂O to exchanger particle, and made several chromatographic columes. With LiNO₃ as raw liquid, HCl as eluent, reasonably intercepting and carturing elution cut, we have successfully separated ⁶Li and ⁷Li. Its single-stage separation factor is 1.023. Up to now, the method of separation for lithium isoptopes has never been reported yet.

Keywords

Titanium (N) Bis (hydrogenorthophoshate) hydrate,

Lithium Isotopes.

Chromatography