Studies on the Non-isothermal Kinetics of Thermal Decomposition of Copper(||) Complexes with N, N 'bis(3aminopropyl) Oxamide

WANG Hai-dong¹, MA Pei-hua¹, LI Yan-tuan², YU Shi-ying¹

(1. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008;

2. Department of Chemistry, Qufu Normal University, Qufu Shandong 273165)

Abstract: The thermal decomposition of copper(||) complex with N, N 'bis(3-aminopropyl) oxamide and nonisothermal kinetics under dynamic air atmosphere were studied by TG, DTG and DTA technique. The non-isothermal kinetics data were analyzed by means of the Achar method and the Coats-Redfen method. The possible kinetic model function was suggested by comparison of the kinetic parameters. The kinetic equation for first stage can be cxpressed as: $d\varphi' dt = A e^{-E/RT} (1 - \varphi^2)$. The second stage is: $d\varphi' dt = A e^{-E/RT} (1 - \varphi)$. The mathematical expressions of E and lnA were derived from the kinetic compensation effects. Key words: Oxamide; Copper(||) complex; Thermal decomposition; Non-isothermal kinetics CLC number: 0.627.12; 0.643.1 Document code: A Article ID: 1008-858X(2001) 02-0026-06

0 Introduction

It is known that N, N 'bis(alkylaminoalkyl) oxamidocopper(\parallel) complexes would be suitable candidates of complex ligands ⁽¹⁾, because they can coordinate to another metal ion through the oxamide oxygens to afford polynuclear species and the remarkable efficiency of the oxamidate bridge to transmit electronic effects between the metal ions, and hence this family of complex ligands has been played an important role in molecular magnetism^(1,2,4-10). In order to investigate the magnetism of heterometal polynuclear complexes, previously we have adopted this strategy to synthesize a series of heterometal polynuclear complexes using mononuclear complexes N, N 'bis (3-aminopropyl) oxamidocoppe(||), [Cu(oxpn)]^[4,9,10]. As a part of our study on the magnetism of polynuclear complexes, we have studied the nonisothermal kinetic of thermal decomposition and thermal behavior of mononuclear Cu(||) complexes to get information on its thermal stability by TG and DTA in this paper. The kinetic parameters were obtained by integral and differential methods. The possible mechanisms of the thermal dissociation have been discussed.

1 Experimental

All chemicals used are of analytical grade \cdot N , N '-bis(3-aminopropyl) oxamidocoper(||) , Cu(ox-

收稿日期: 2000-07-10

作者简介: 汪海东(1965-), 男, 副研究员。研究方向: 热分析动力学。

⁽C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

pn), are prepared by previously published procedures ${}^{(5)}\cdot$ They are recrystallized from water and dred in vacuum.

Thermal studies are performed on the TG-DTA 92 thermal analysis system (Setaram Corp.). TG and DTA runs are carried out at a heating rate of 7.5 °C • min⁻¹ under a dynamic air atmosphere using a flow rate of 40 ml • min⁻¹.

2 Results and discussion

2.1 Thermal behavior of Cu(oxpn)

The TG, DTG and DTA curves of Cu(oxpn) complex are shown in Fig. 1 The DTG curve indicates the dissociation of complex in two stages. The first transition changes from 261 to 321 °C, and the mass loss observed is 28.68 against the calculated

loss of 28.83%, corresponding to the release of two nitrogens and four carbons. The second transition is from 321 to 405 °C, and the mass loss observed is 41.09 against the calculated loss of 41. 01%, due to the release of all other organic ligands. The thermoanalytical data rof Cu (oxpn) complex are given in Table 1.

Fig. 1 TG-DTG-DTA curve of Cu(oxpn) complex

Table 1 The thermal decomposition data of Cu(oxpn) by TG-DTA

Stages of	Decomposition	DTA/Ĉ	mass loss/%				
decomposition	temperature range/ Ĉ	T^{P}_{a}	TG	Theory			
(1)	261-321	289.7(exo)	28.68	28.83			
(2)	321-405	365.9(ex 0)	41.09	41.01			

 $^{a}T_{\,\rm p} indicates the temperature of peak in DTA curve$

Two transitions are exothermic in DTA curve corresponding to the transition observed in the TG curve. The exothermic transition indicates that organic groups are oxidized under air atmosphere. Both of the exothermic peak temperatures are also given in Table 1.

The sequential thermal dissociation process of the complex is shown as follow:

 $CuC_8H_{16}N_4O_2 \longrightarrow CuC_4H_{16}N_2O_2 \longrightarrow CuO$

2.2 Kinetic studies of non-isothermal decomposition

In the present paper, the Achar^[11] and the Coats-Redfen^[12] methods are employed to derive the kin-

etic parameter and a possible kinetic model function of thermal decomposition was suggested by comparing the kinetic parameters.

The integral and differential equations are as follows:

$$\ln\left(\left(\frac{d\varphi}{dt}\right)\left(\frac{\varphi}{f}\right)\right) = \ln A - E/RT \quad (1)$$
$$\ln\left(\left(\frac{\varphi}{f}\right)\right)^{2} = \ln\left(AR/B\right) - E/RT \quad (2)$$

where α is the fraction of decomposition, T is the absolute temperature, β is the heating rate, Eis the activation energy in $KJ \cdot mol^{-1}$, A is the pre-exponential factor, R is the gas constant in KJ $\cdot mol^{-1} \cdot K^{-1}$, f(φ and g(φ are the most probable kinetic model functions(listed in Table 2).

Table 2	Mathematical	expressions for	different	mechanisms
---------	--------------	-----------------	-----------	------------

No·	mechanism	symbol	$g(\varphi = \int_{f(\varphi)} \frac{d\alpha}{d\alpha} = kt$	$f(\boldsymbol{\alpha} = \frac{1}{k} \left(\frac{d\boldsymbol{\alpha}}{dt} \right)$
1	Powerlaw	P 1	Å.	4 ở ⁄4
2			α^{β}	3 ở / ³
3			$\alpha^{/2}$	$2 \mathbf{d}^2$
4			α	1
5			å⁄ ³	$\frac{2}{3} \overline{\alpha}^{1/2}$
6	Avrami Erofeev	A 1.5	$[-\ln(1-\alpha)^{2/3}]$	$\frac{2}{3}$ (1-q [-ln(1-q] ^{1,\beta}
7	Avrami Erofeev	A_2	$[-\ln(1-\alpha)]^{1/2}$	$2(1-q(1-q))^{1/2}$
8	Avrami-Erofeev	A 3	$[-\ln(1-\alpha)]^{1/3}$	$3(1-\alpha)^{2/3}$
9	Avrami ⁻ Erofeev	\mathbf{A}_4	$[-\ln(1-\alpha)]^{1/4}$	$4(1-q)^{3/4}$
10	Prout-Tompkins	B_1	$\left[-\ln\left(1-\alpha\right)^{2}\right]$	$\frac{1}{2}(1-\alpha(1-\alpha))^{-1}$
11			$\left[-\ln\left(1-\alpha\right)\right]^{3}$	$\frac{1}{3}(1-\alpha (-\ln(1-\alpha))^{-2})$
12			$[-\ln(1-\alpha)]^4$	$\frac{1}{4}$ (1-q(1-q)) ⁻³
13	Abstract surface	\mathbf{R}_2	$1 - (1 - q^{1/2})$	$2(1-q^{1/2})$
14	Abstract surface	\mathbf{R}_3	$1 - (1 - q^{1/3})$	$_{3(1-q^{2/3})}$
15	1-D diffusion	\mathbf{D}_1	å	1/(2 ợ
16	2-D diffusion	\mathbf{D}^2	$\alpha + (1 - \alpha \ln(1 - \alpha))$	$(-\ln(1-\alpha))^{-1}$
17	3-D diffusion	D^3	$(1 - (1 - \dot{\alpha}^{/3})^2)$	$\frac{3}{2}(1-q^{2/3}(1-(1-q^{1/3}))^{-1})$
18	Ginstling-Brouns	\mathbf{D}_4	$(1-2 q'^3) - (1-q^2)^3$	$\frac{3}{2} ((1 - q^{-1/3} - 1)^{-1})$
19	Avrami-Erofeev	\mathbf{A}_1	$-\ln(1-\alpha)$	$1 - \alpha$
20	Second order	\mathbf{F}^2	$(1 - q^{-1} - 1)$	$(1 - q^2)$
21	Third order	\mathbf{F}^3	$(1 - q^{-2})$	$\frac{1}{2}(1-\alpha)^{3}$
22			$1 - (1 - q^{1/4})$	$4(1-q^{3/4})$
23			$(1 - q^{-1/2})$	$\frac{1}{2}(1-q^{-2/3})$
24			$(1-q^{-1/3}-1)^2$	$\frac{3}{2}(1-q^{4/3}((1-q^{-1/3}-1)^{-1}))$
25			$[1-(1-q^{1/3})^{1/2}]$	$6(1-q^{2\beta}(1-q^{1\beta})^{1/2})$
26			$[1-(1-q^{1/2})^{1/2}]$	4 $\{(1-q) [1-(1-q)]^{1/2}\}^{1/2}$
27			$1 - (1 - q^2)$	$\frac{1}{2}(1-q^{-1})$
28			$1 - (1 - q^3)$	$\frac{1}{3}(1-q^{-2})^{-2}$
29			$1 - (1 - q^4)$	$\frac{1}{4}(1-q^{-3})$

 Table 3
 Basic data ror Cu(oxpn) determined by TG-DTG

		Stage l			Stage 2						
No·	T/K	α	$\mathrm{d} \mathbf{a} \mathrm{d} t$	No·	T/K	α	$d \not \! \! Q dt$				
1	539.56	0.0208	1.1522	1	618.66	0.1429	2.9860				
2	542.66	0.0312	1.8686	2	621.76	0.1805	3.5911				
3	545.76	0.0625	2.9443	3	625.16	0.2180	4.7294				
4	548.96	0.1042	4.7318	4	628.36	0.2556	6.0555				
5	552.16	0.1562	6.8786	5	631.76	0.3083	7.2565				
6	555.56	0.2500	8.7379	6	636.06	0.4211	7.9752				
7	559.86	0.4271	9.6351	7	640.06	0.5113	7.7503				
8	563.96	0.6146	8.7356	8	643.06	0.5639	7.1892				
9	567.36	0.6979	6.9272	9	645.76	0.6241	6.5865				
10	570.36	0.7500	5.0332	10	648.66	0.6842	6.1831				
11	573.26	0.7917	3.5795	11	651.86	0.7444	5.9303				
12	576.16	0.8438	2.9374	12	654.66	0.8045	5.5293				
13	579.06	0.8750	2.5664	13	657.66	0.8571	4.9149				
14	581.86	0.8958	2.2998	14	660.16	0.8947	4.1383				
15	584.86	0.9375	2.0773	15	662.66	0.9398	3.2782				
16	587.76	0.9583	1.8732	16	665.26	0.9624	2.3809				
17	590.56	0.9792	1.7480	17	667.66	0.9774	1.5950				

(C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

The basic parameters of $T \cdot \alpha$ and $d \not q dt$ obtained from the TG and FTG curves are listed in Table ³. Twenty-nine types of kinetic model functions are into E(qs·(1) and(2), respectively. The kinetic analysis was completed with the linear least-squares method and the results are shown in Table 4and 5. When the values of *E* and ln*A* obtained with the two methods are approximately the same and the linear correlation coefficiet is better, it can be concluded that the function is the function of the probable thermal decomposition mechanism of the complex.

For the first stage, the kinetic equation of thermal decomposition lf Cu(oxpn) complex is:

$$\mathrm{d}\,\varphi'\mathrm{d}t = A \,\mathrm{e}^{E/RT} (1 - \varphi^2)$$

It shows that thje first stage of dissociation

for Cu(oxpn) is controlled by $F_2($ chemical reaction) mechanism \cdot

The kinetic equation of decomposition for the second stage of the complex is:

$$d \not \!\!\!\! q dt = A e^{E/RT} (1 - q)$$

It shows that the second stage of decomposition for $Cu(\ oxpn)$ is controlled by $F_1(\ nucleation$ and growth) mechanism \cdot

2.3 The kinetic compensation effect

According to the frequently used mathematical expression for the kinetic compensation effect $\ln A = qE + b^{13}$, we fitted the kinetic parameters (*E* and $\ln A$) obtained from the integral methods by the linear least-squares method. The kinetic compensation parameters a and b are listed in Table 6.

 Table 4
 Kinetic parameter for the thermal decomposition data of Cu(oxpn): stage 1

Function	I	ntegral meth	od	Differential method				
$No\cdot$	$E/kJ \cdot mol^{-1}$	$\ln A / s^{-1}$	r	$\overline{E/kJ\cdot mol^{-1}}$ $\ln A/s^{-1}$ r				
1	38.76	5.76	0.8901	-163.59	-34.11	0.9527		
2	54.83	9.43	0.9010	-147.54	-30.50	0.9321		
3	86.92	16.54	0.9103	-115.45	-23.44	0.8603		
4	183.24	37.24	0.9184	-19.18	-2.81	0.1084		
5	119.03	23.51	0.9145	77.09	17.53	0.4758		
6	166.49	34.30	0.9679	79.01	19.16	0.8218		
7	122.53	24.73	0.9667	35.05	9.62	0.5702		
8	78.56	15.02	0.9640	-8.90	-0.05	0.1813		
9	56.56	10.06	0.9609	- 30.88	-4.96	0.5405		
10	518.34	109.55	0.9703	430.65	94.33	0.9618		
11	782.16	165.54	0.9706	694.37	151.39	0.9666		
12	1046.02	221.42	0.9708	958.10	208.96	0.9683		
13	213.68	43.41	0.9443	73.87	16.94	0.6642		
14	226.02	45.78	0.9530	104.89	23.36	0.8055		
15	375.87	77.85	0.9221	173.36	37.76	0.6916		
16	411.39	85.10	0.9364	244.55	52.74	0.8260		
17	461.46	94.73	0.9549	340.19	72.25	0.9225		
18	427.61	87.20	0.9430	216.13	44.99	0.7793		
19	254.47	53.26	0.9992	166.92	38.09	0.9263		
20	369.42	78.86	0.9963	353.01	78.99	0.9800		
21	362.98	79.87	0.9519	539.11	120.58	0.9791		
22	232.64	46.98	0.9572	120.39	26.48	0.8505		
23	83.70	17.02	0.9444	-143.25	-29.39	0.7209		
24	585.58	122.25	0.9828	526.29	113.15	0.9806		
25	108.31	20.93	0.9489	-12.77	-1.44	0.2396		
26	102.16	19.72	0.9394	-37.62	-6.70	0.5707		
27	143.12	28.80	0.8750	-205.28	-43.02	0.7974		
28	118.21	13.46	0.8421	-391.38	-83.52	0.8809		
29	101.01	19.74	0.8156	-577.47	-124.13	0.9079		

(C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

第	9	卷
~ I *		ت ا

Table 5	Kinetic	parameter	for	the	thermal	decom	position	data	of	Cu(oxpi	ı) :	stage	, 2

Function	Ι	ntegral meth	od	Differential method				
No·	$E/kJ \cdot mol^{-1}$	$\ln A / s^{-1}$	r	$E/kJ \cdot mol^{-1}$ lnA/s^{-1} r		r		
1	23.23	1.18	0.9546	-135.68	-24.64	0.8817		
2	34.52	3.63	0.9627	-124.37	-22.30	0.8569		
3	57.14	8.24	0.9697	-101.76	-17.79	0.7888		
4	124.94	21.34	0.9745	-33.93	-4.77	0.3431		
5	79.73	12.68	0.9722	33.89	7.95	0.3028		
6	136.80	24.24	0.9994	120.07	24.94	0.9761		
7	99.92	17.06	0.9992	83.18	17.79	0.9533		
8	63.06	9.74	0.9993	46.30	10.52	0.8716		
9	44.62	5.96	0.9992	27.86	6.80	0.7324		
10	431.74	80.27	0.9993	415.12	80.94	0.9972		
11	652.95	121.84	0.9993	636.40	123.62	0.9984		
12	874.18	163.30	0.9993	857.70	166.75	0.9988		
13	161.05	27.89	0.9924	79.95	16.46	0.8555		
14	175.938	30.44	0.9962	117.91	23.36	0.9565		
15	260.51	46.70	0.9764	101.72	20.56	0.6447		
16	302.20	54.24	0.9869	187.36	36.40	0.8948		
17	362.56	64.57	0.9965	304.59	57.46	0.9877		
18	321.66	56.55	0.9909	152.75	28.23	0.8202		
19	210.54	38.39	0.9993	193.84	39.07	0.9900		
20	352.60	66.20	0.9805	421.59	82.91	0.9685		
21	444.68	85.64	0.9165	649.36	127.45	0.9541		
22	183.98	31.75	0.9976	136.89	26.72	0.9752		
23	103.16	18.43	0.9052	-185.78	-33.31	0.7658		
24	514.37	94.14	0.9967	532.36	101.30	0.9922		
25	82.65	12.99	0.9958	24.57	5.96	0.6238		
26	75.18	11.66	0.9912	-5.96	0.29	0.1467		
27	79.31	12.69	0.9242	-261.70	-47.93	0.8122		
28	53.00	7.50	0.8704	-489.46	-91.36	0.8647		
29	36.30	4.08	0.8134	-717.23	-134.92	0.8831		

Table 6 The stage s kinetic model function and compensation effect of Cu(oxpn) complexes

9	Function	Integ	al method		Differen	ntial metho	Compensation effect			
Stage No.	$No\cdot$	$E/kJ \cdot mol^{-1}$	$\ln A / s^{-1}$	r	$E/kJ \cdot mol^{-1}$	$\ln A / s^{-1}$	r	а	b	r
(1)	20	369.42	78.86	0.9953	353.01	78.99	0.9800	0.2128	-1.17	0.9999
(2)	19	210.54	38.39	0.9993	193.84	39.07	0.9900	0.2903	-2.23	0.9999

Acknowledgments:

This work has been supported by the National Natural Science Foundation of China.

References:

- [1]H·Ojima and K·Nonoyama·Copper(Ⅱ) Complexes With N, N'bis(alkylaminoalkyl) oxamides and Related Ligands[J]·Co-
- [2] P. Yu, O.Kahn, K. Nakatani, E. Codjovi, et al. Design of a Molecular-Based Ferromagnet through Polymerization Reaction in the Solid State of Mn^{II} Cu^{II} Molecular Units. Crystal Structure of MnCu(obze) (H²O)⁴ · H²O(obze⁼Oxamido-N-benzoato-N 'ethanoato) [J]. J. Am. Chem. Soc., 1991, 113:6558.
- [3]F·Lioret, M·Julve, R·Ruiz, et al. Crytal Structure and Magnetic Properties of MnCu(obbz) (H2O)³ · DMF (obbz = N, N² Oxamidobis(benzoato) and DMF = Dimethylformamide), a Precursor of the Molecular-Based Magnet MnCu(obbz) · H2O with

31

- [4]Y·T·Li, C·W·Yan, S·H·Miao and D·Z·Liao. Ferromagnetically Coupled Heterodinuclear Copper(II) - Chromium(III) Complexes with N, N ²bis(2-aminopropyl) oxamidocopper(II) [J]. Polyhedron., 1998, 15:2491.
- [5]Y.Journaux, J. Sletten and O.Kahn. Tunable Interaction in ↓ Oxamido Copper(II) Binuclear Complexes [J]. lnorg chem., 1985,24:4063.
- [6]Y·T·Li, Z·H·jiang, S·L·Ma, et al. [J]. Polyhedron., 1993, 23:2781.
- [7]Y·T·Li, D·Z·Liao, Z·H·Jiang and G·L·Wang. Synthesis and Magnetic studies of Copper(II) -Lanthanide(III) Complexes with N,N -bis(2-aminopropyl) oxamidocopper(II) [J]. Polyhedron., 1995, 14(15/16):2209
- [8]Y·T·Li, Z·H·Jiang, S·L·Ma, et al. Synthesis and Magnetic Properties of Copper(II)-Lanthanide(III)-Copper(II) Trinuclear Comples with N, N bis(²-aminopropyl) oxamido Ligand(J).

Trans. Met. Chem., 1994, 19(3):332.

- [9]Y·T·Li, C·W·Yan, Y·F·Lu, and X·Z·Liao. Synthesis and Magnetic Ptoperties of [↓]Oxamido Heterobinuclear Iron (||) Copper(||) Complexes [J]. Synth. React. Inorg. Met.-Org. chem., 1998, 28(7):1091.
- [10]Y·T·Li, C·W·Yan, S·L·Bao and D·Z·Liao·Synthesis and Magnetic Studies of Heterobinuclear Copper(||) -Iron(||) Complexes with N, N 'bis(³-aminopropyl) oxamide as Ligand
 [J]·Synth·React·Inorg·Met·Org·Chem·, 1999, 29(5): 737.
- [11] B. N. Achar, G. W. Brindley and J. H. Sharp. Vol. 1. [C]. Proc. Intem. Clay Conf., Jerusalem, 1966.
- [12]A·W· Coats and J·P· Redfern· Kinetic Parameters from Thermogravimetric Data[J]. Nature, 1964, 201:68.
- [13] J. Zsako. The Kinetic Compensation Effect [J]. J. Therm. Anal., 1976,9:101.

N,N'-双(3-氨丙基)草酰胺合铜非等 温热分解动力学研究

汪海东¹,马培华¹,李延团²,余世英¹

(1. 中国科学院青海盐湖研究所,青海 西宁 810008;

2. 山东曲阜师范大学化学系,山东 曲阜 273165)

摘要: 采用 TG⁻DTG⁻DTA 热分析技术研究了 N, N'-双(³- 氨丙基) 草酰胺合胴(Ⅱ) 配合物在动态空气气 氛中的热行为;用微分法(Achar 法) 和积分法(Coats-Redfen 法) 协同处理非等温 TG 数据, 通过对比热分解动力学 参数 E 和 lnA, 提出了 配合物 第一阶段热分解动力学方程: d φ dt = $Ae^{-E/RT}$ (1 - q)² 及 第二阶段热分解动力学方程: d φ dt = $Ae^{-E/RT}$ (1 - q; 并由动力学补偿效应获得了 E 和 lnA 的数学表达式. 关键词: 草酰胺; Cu(Ⅱ) 配合物; 热分解; 非等温动力学