三氟乙酰对癸基苯为中性载体的碳酸根离子选择电极的制备和应用

钱国英,吴国梁

(中国科学院青海盐湖研究所西安二部,陕西 西安 710043)

摘要:实验比较了多种膜组分的性能,制得了有较长使用寿命的三氟乙酰对癸基苯为载体的 PVC 膜碳酸根离子电极。适当增大膜中载体的含量,采用亲脂性强的增塑剂并加入适量增水性溶剂,有利于延长电极的使用寿命和增强抗亲脂性阴离子干扰的能力。已利用此种膜电极,以控制 pH 标准比较法测定了模拟血清和质控血清中的碳酸根,并以已知稀释一标准加入法测定了碳酸盐型卤水中的碳酸根。

关键词: CO32-;选择电极

中图分类号:0657.15

文献标识码:A

文章编号:1008-858X(2001)02-0051-05

临床检验,环保分析和某些工艺流程分析中要 求快速准确地测定碳酸根。20多年来利用三氟乙酰 苯衍生物制备 CO32-电极的研究常有报导[1~15]。 1973 年美国专利 No. 3, 723, 281^[1]叙述了由高分子 量的季铵盐和三氟乙酰对烷基苯组成的一种对 HCO3 一敏感的电极。Herman 等人[2,3]证明此类电极 电极膜是对 CO32-响应,而非 HCO3-。1989 年美国 专利 4,810,351[10]报导了一种有较好抗干扰能力的 CO32-电极的制备方法,膜组分中加入适量增水溶 剂,有利于改善膜对 CO3²⁻的选择性。Behringer 等 人[11]研究了在电极膜中8种对位带不同取代基的 三氟乙酰苯衍生物对阴离子的选择性。Dinten 等 人[12]研究了中性载体液膜在水和血液中的使用寿 命与膜成分的亲脂性和它们之间的相关性。Shin 等 人[13]以单组分硅橡胶代替 PVC,并在高 pH 值底液 中测定 CO32-,能减小水杨酸和氯根的干扰。Sokalski 和 Maj Zurawska 等人[14,15]介绍了多种三氟乙 酰苯衍生物 PVC 膜 CO3²⁻电极的性能,并试验了以 标准比较法直接测定血清中的 CO3²。

根据文献报导的一般三氟乙酰苯衍生物 CO3²⁻ 电极膜组分制备的流通型电极,用于连续检测血清 中 CO3² 的主要问题是电极使用寿命不长。本文报告我们制备的几种三氟乙酰苯衍生物 CO3² 电极的性能和应用。适当增大膜中载体的含量,采用亲脂性强的增塑剂,加入适量增水性溶剂,有利于改善电极膜的性能,可大幅延长电极的使用寿命。

1 实验部分

1.1 试剂

聚 氯 乙 烯 粉 (PVC), 三 氟 乙 酰 对 丁 苯 (TFABB),氯化三(十二烷基)甲基铵(TDMACL),癸二酸二辛酯(DOS)均为 Fluka 产品。三氟乙酰对癸基苯(TFADB)为 Trans World Chemicals 产品。邻苯二甲酸二癸酯(色谱用,DDP),二苄醚(色谱用,DBE)为上海化学试剂厂产品。四氢呋喃(THF)为新蒸馏的。水为去离子水。

1.2 仪器

使用的仪器如同文献[16]。

收稿日期:2000-08-20

作者简介:钱国英(1939-),女,研究员。

表! 三氟乙酰苯衍生物 CO ;"电极的性能

Table 1 Preperty of trifluoroethyl benzen derived CO₃²⁻ electrode

				1 2145		20 CONTINUE OF	topolity of mindological series and the	6					
₩ !	膜组分	连续检测中	电极内	电极内阻mΩ				选择	終	数K 6032			
极号	%a	使用寿命 1/d	流通型	通用型	SO,²-	[L ,	רם.	· Br	_	Ac	_¹0d²H	, °ON	水杨酸根
	TFABP 7.4												
~	TDMACI 2.6	Ç	ć	c C	100		7-01-27						
K	DOS 58.2	0.2	90	U. 35	⊃[×.8		4×10						
	PVC 31.8												
	TFADP 6.3												
4	TDMACI 3.1	Š	4	ı	1				9	 			
x	DOS 59.3	92	30	0.35	1.8×10-1	1.3×10-" .	1.8×10-4 1.3×10-4 5.0×10-4 6.3×10-4		3900	2.2×10- 9×10-	0I ×6		5×10°
	PVC 31.3		,				·						
•	TFADP 7.2												
	TDMACI 3.6												
ပ	DOS 51.8	30	35	0.50	1.2×10 ⁻⁴	1.3×10 ⁻⁵ !	$1.2 \times 10^{-4} \ 1.3 \times 10^{-5} \ 5.2 \times 10^{-4} \ 4.3 \times 10^{-2}$. 3×10 ⁻²	190	$1.6 \times 10^{-3} 9 \times 10^{-3}$	€-01×6	6.2	2.7×10°
	PVC 28.8												
	TFADP 20.2]		1								
	TDMACI 7.2												
Ω	DDP 36.0	>90	24	0.24	1.0 \times 10 ⁻⁴	2×10-5	$0.24 - 1.0 \times 10^{-4} - 7 \times 10^{-5} - 4.2 \times 10^{-4} - 2.0 \times 10^{-2}$: 0×10 ⁻²	36	$5.5 \times 10^{-8} \text{ J.} 1 \times 10^{-2}$	1.1×10 ⁻²	3.6	4×10 ⁵
	DBE 7.7												
	PVC 28.9												

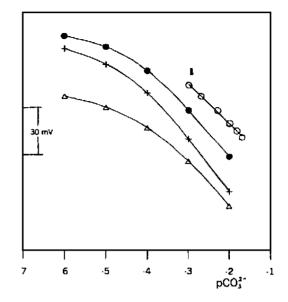
1.3 电极制备和性能测试

PVC 膜流通型和通用型电极的制备方法如同 文献[17,18]。流通型电极膜厚约 0.5mm,通用型约 0.2mm。电极内充溶液为 AgCl 饱和的 0.1mol/L $N_{a}H_{2}PO_{4} + 0.1_{mol}/L N_{a^{2}}HPO_{4} + 0.01_{mol}/L N_{a^{2}}$ Cl。电极使用前在 0.01mol/L NaHCO3 中浸泡数小 时,洗净后备用,不用时宜干放。

流涌型电极的测试电池为:

Ag, AgCl, KCl(1mol/L) || 样品溶液 |膜 |内充 溶液, AgCl, Ag

通用型电极的测试电池为:


Hg, Hg²Cl², KCl(饱和) ^{||} 样品溶液 [|]膜 内充溶 液, AgCl, Ag

电极的响应曲线是在 pH 一定的底液中测定。 选择系数以分别溶液法测定,溶液均为 0. 1mol/L 的钠盐,计算方法见文献[16]。电极内阻以并联电阻 法测定[17]。所有测定均在室温 25 ℃ 左右进行。

2 电极性能

电极膜组分和一般性能见表 1。响应曲线如图 1,溶液 pH 对响应电位的影响如图 2。

底液 pH 从 7.50 增大到 8.50, 响应曲线变化轻 微,斜率略有增大,pH 再上升,响应斜率趋向减小。 CO_3^{2-} 浓度大于 10^{-4} mol/L 时,响应时间在 1min 内。在使用初期,这几种电极对模拟血清中 CO_3^2 响应相似,随着使用时间的增长,它们的差异变得明 显。斜率显著降低,响应变得迟钝,表明电极的使用 寿命已到。寿命也与温度有关,夏天室温高,使用寿 命明显变短,可能是由于膜中有机物在水中的溶解 度随温度的升高而增大之故。由图 2 可知,pH 改变 0.1 时将导致响应电位变化约 $2.5_{\rm mV}$, 对 1×10^{-3} mol/L CO32-也类似。因而在分析测定中,必须要小 心控制 pH。由表 1 可知, 膜中适当增大 TFADB 的 含量和加入适量的二苄醚,不仅可延长电极的使用 寿命,而且也增强了抗亲脂性阴离子干扰的能力。

△ pH 9.20 的 0.1mol/l Tris+H2SO4 中

- + pH 8.50 的 0.1mol/l Tris+H2SO4 中
- pH 7.50 的 0.1mol/l Tris+H2SO4 中
- 2+1 稀释的 pH 8.50 的模拟血清中

图 1 PVC 膜 CO3²⁻电极 D 在不同酸度下的响应曲线

Fig. 1 Responding curve of PVC membrane CO3² electrode D under different acidity

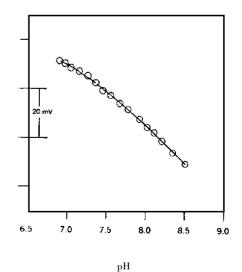


图 2 0.01mol/L Tris+H2SO4 中的 1.0×10⁻² mol/LNaHCO3 溶液的 pH 对响应电位的影响(H2SO4 调控 pH)

Fig. 2 Effect of pH value of 0.1×10⁻² mol/LNaHCO₃ solution in 0.01 mol/L Tris+H2SO4 on electric position

3 应用

将制备的电极应用于含碳酸盐卤水中 CO3²⁻的 测定。

有的碳酸盐型水样中 CO32-含量颇高, 共存的 Cl⁻也甚高。通常的标准比较法不太适用,因难配制 类似组分的标准溶液。方法比较表明,采用标准加入 法或已知稀释-标准加入法可得到较好的结果。后 一方法操作如下:视水样中 CO3²⁻含量,定量移取 V_x(1.0-10.0) mL 水样以 pH8.50 的 0.1mol/L Tris - H2SO4 缓冲溶液稀释到 V(10.0~25.0) mL, 使待测液中的 CO_3^{2-} 含量在($10^{-4} \sim 10^{-3}$) mol/L 之 间。浸入电极,测得响应电位E后,再定量加入 Va(5.0~10.0) ml pH 8.50 的 0.1mol/L Tris+ H_2SO_4 溶液,滴入 CO_3^2 ~浓度为 $C_s[(5 \times 10^{-4} \sim 5 \times$ 10⁻²) mol/L, 比预计待测液的浓度大 5 倍左右 1的 pH 为 8.50 的 0.1 mol/L Tris = H₂SO₄ 标准溶液,使 电位恢复到 E,记录耗用的 CO_3^2 标准液的体积 V_s 。 水样中 CO_3^2 的含量 C_x 按下式求得:

$$C_x = \frac{C_s V_s V}{V_x (V_a + V_s)}$$

确保电位从 E 开始再恢复到 E 的测量过程中, 溶液的 pH 不改变是此法取得成功的关键。实验表 明,本法测定误差为±4%。

结果和讨论

选用有较强亲脂性的载体和增塑剂,适当加大 膜中载体的含量,添加适量的增水性溶剂,可制得有 较长使用寿命的 PVC 膜 CO32-电极。这种电极制备 方便,响应快速,可准确快速地测定卤水中 CO_3^{2-} , 便于控制工艺过程。利用 CO32-电极测定溶液中的 CO_3^{2-} 时,必须要小心控制溶液的 pH, 0.02pH 的改 变可能导致测定结果有±5%的误差。

参考文献:

- [1] W.M.Wise.U.S.Patent 3,723,281,1973.
- [2] H.B. Herman, G.A. Rechnitz. Preparation and Properties of a Carbonate Ion - selective Membrane Electrode [J]. Anal. Chim · Acta, 1975, 76:155.
- [3] H.B. Herman, G. A. Rechnitz. Serum Carbon Dioxide Determinatiom Using a Carbonate Ion - selective Membrane Electrode [J] · Anal · lett · , 1975, 8:147.
- [4] (JA) Greenberg, M.E. Meverhaff, Response properties Appli-Publishing House. All rights reserved.

- cations and Limitations of Carbonate selective Polymer Membrane Electrodes[J]·Anal·Chim·Acta, 1982, 141:57.
- [5] A · L · Smirnova · A · L · Grekovich · E · A · Materova · Investigation of the properties of carbonate - selective electrodes as a function of the exchanger - neutral complexion ratio in the membrane[J]. Electrokhimiya, 1985, 21:1221.
- [6] A.L. Smirnova, A.L. Frekovich, E.A. Materova. Carbonate selective film memvranes based on a neutral complexion of the hexyl ester of frifluoroacetylbenzoic acid [J]. Electrokhimiya, 1985,21.1335.
- [7] W. J. Scott, E. Chapoteau, A. Kumar. Ion selective membrane electrode for rapid automated determinations of tattle carbon dioxide[J]. Clin. Chem. (Winston - Salem, N. C.), 1986, 32:
- [8] 王柯敏, 牛从容, 麻金凤, 俞汝勤. HTPP 作为定域体的碳酸根 离子电极[J]. 化学学报,1986,44:455.
- [9] M. E. Meyerhoff, E. Pretsch, D. H. Welti, W. Simon. Role of Trifluoroacetophenone Solvents and Quaternary Ammonium Salts in Carbonate - selective Liquid Membrane Electrodes [J] · Anal · Chem · , 1987, 59 : 144.
- [10] Chapoteau, et al. U.S. Patent 4,8120,351,1989.
- [11] C. Behringer, B. Lehmann, J-P. Haug, et al. Anion selectiving ties of trfluoroacetophenone derivatives as neutral ionophores in solvent - polymeric membranes [J] Anal Chim Acta., 1990,233.41.
- [12] O. Dinten, U. E. Spichiger, N. Chaniotakis, et al. Lifetime of Neutral - Carrier - Based Liquid Membranes in Aqueous Samples and Blood and the Lipophilicity of Membrane Components[J]·Anal·Chem·, 1991, 63:596.
- [13] $J \cdot H \cdot Shin$, $D \cdot S \cdot Sakong$, $H \cdot Nam$, $G \cdot S \cdot Cha \cdot Enhanced$ Serum Carbon Dioxide Measurements With a Silicone Rubber -Bossed Carbonate Ion - Selective Electrode and a High - pH Dilution Buffer [J] · Anal · Xhem · , 1996, 68:221.
- [14] T. Sokalski, D. paradowski, J. Ostaszewska, et al. Observations on the behavior of some trifluoroacetophenone derivatives as neutral carriers for carbonate ion - selective electrodes(J). Analyst, 1996, 121:133.
- [15] M. Maj = zurawska, T. Sokalski, J. Ostaszewska, et al. Carbonate ion selective electrodes with trifluoroacetophenone derivatives in potentiometric clinical analyzer (J). Talanta, 1997,44.1641.
- [16] G. Y. Qian, M. B. Wu, G. L. Wa, et al. Strontium ion selective electors based on the demised with pyridine ring asionophores[J]·Talanta, 1998, 47:1149.
- [17] 钱国英,吴国梁,朱军.碱性液中锂的在线监测[J].盐湖研究, 1996, (3-4):52.
- [18] 中国科学院兰州化学物理研究所,中国科学院青海盐湖研究 所.以二叔丁基二苯并-30-王冠-10 为活性材料的 PVC 膜钾离子选择电极[J].分析化学,1979,7(10):20.
- [19] E.L. Eckfeldt, G.A. Perley, J. Electrochem Measurement of and Effect of Temperature on Electrical Resistance of Glass Electrodes[J]·Soc·, 1951, 98:37.
- http://www.cnki.net

Preparation and Application of Carbonate Ion Selective Electrodes Based on Trifluoroacetyl-P-decylbenzene

QIAN Guo-ying, WU Guo-liang

(Xi'an branch of Qinghai Institute Salt Lakes, Chinese Academy of Sciences, Xian 710043, China)

Abstract: PVC membrane carbonate ion electrode with trifluoroacetyl-p-decylbenzene (TFADB) as neutral ionosphere. Tridodecylmethylammonium chloride (TDMACL) as active, and didecylphthalate + dibenzyl ether (DDP+DBE) as plasticizing solvent was prepared and its lifetime in the continuous monitoring system was longer than three months. Determination of carbonate in a series of model serum samples and aqueous solutions samples by the methods of the control pH and known dilution - standard addition has been developed.

Key words: Carbonate ion electrode; Trifluoroacetyl-p-decylbenzene; Carbonate determination; Control pH; Known dilution - standard addition