三元体系Na₂B₄O₇-NaHCO₃-H₂O和 Na₂CO₃-NaBO₂-H₂O等温溶解度研究

杨 琴,李 君,李恒欣,张逢星*

(西北大学化学系陕西省物理无机化学重点实验室,陕西 西安 710069)

摘要:作为研究四元体系Na₂B₄O₇-Na₂CO₃-NaHCO₃-NaBO₂-H₂O的开端,测定了三元体系Na₂B₄O₇-NaHCO₃ -H₂O和Na₂CO₃-NaBOH₂-H₂O在0°C、15°C、45°C时的溶解度,绘制了相应的组成-性质围。两个三元体系的 溶度阻在研究温度范围内均属于低共饱型,平衡固相为组分化合物或其水合物。 关键词,溶度图;相平衡;三元体系;硼砂;碳酸氢钠;偏硼酸钠 中图分类号:0642.42 文献标识码:A 文章编号:1008-858X(2001)04-0024-06

西藏扎布耶盐湖及有关含硼碱湖的组成可 以概括为Li、Na、K//Cl、SO4、CO3、B2O3-H2O复 杂多组分体系^[1]。其中,由于发生反应:Na₂B₄O₇ $+2Na,CO_3+H_2O=2NaHCO_3+4NaBO_3,使得$ 该体系更复杂起来。因此,研究这一反应,尤其 是从相平衡探讨该反应热力学,对此类体系相 关系和盐湖矿床成因揭示有重要的理论意义和 实际价值。为此,我们设计四元体系Na,B,O,-Na,CO,-NaHCO,-NaBO,-H,O在0°C~45°C时 的等温和多温溶解度图,用于研究此反应并揭 示含硼碱湖天然碱(Na₂CO₃ · NaHCO₃ · 2H₂O) 的成因。由于该四元体系的边界三元体系 Na₂B₄O₇-NaHCO₃-H₂O 和Na₂CO₃-NaBO₂-H₂O 尚缺乏我们研究四元体系等温截面需要的 0°C、15°C、和45°C的等温溶解度数据,作为研 究四元体系Na₂B₄O₇-Na₂CO₃-NaHCO₃-NaBO₂-H₂O多温相平衡的基础,我们先就这2个三元体 系进行0°C、15°C和45°C的等温溶解度研究。

收稿日期: 2000-07-21

* 通信联系人:西北大学化学系,中国西安太白北路229 号 1 实验部分

1.1 试剂

Na₂B₄O₇ • 10H₂O(A.R)、无水Na₂CO₃(A. R)、NaHCO₃(A.R),西安化学试剂厂产品。 NaBO₂ • 4H₂O(A.R),上海试剂二厂产品。

1.2 实验仪器

恒温槽(自制),温度涨落±0.05°C;WZS 一型阿贝折光仪(上海光学仪器厂)。

1.3 复体配制、平衡检验和取样

. 三元体系采用合成复体法配样,封于带橡 皮塞的玻璃管中,置于自制旋转式恒温槽内 (0°C以上)或盛有冰水的杜瓦瓶中(0°C)搅拌 平衡。用阿贝折光仪隔天取样测定折光率,根据 折光率值来判断样品是否平衡。实验表明在不 同温度,体系一般需要5~10天到达平衡,平衡 后静置2天后进行取样。同时用阿贝折光仪测饱 和溶液的折光率,化学分析方法确定液相和湿 渣组成。三元体系平衡固相用Schreinemakers 法^[2]确定,也用偏光显微镜鉴定固相。

1.4 分析方法

B₂O₃采用甘露醇法^[3]、Na₂O用标准酸溶液 滴定确定^[4]。实验证明,分析方法无干扰现象。

2 结果与讨论

2.1 三元体系Na,B,O,-NaHCO₃-H₂O 0°C、
15°C及45°C时的溶解度

三元体系Na₂B₄O₇-NaHCO₃-H₂O 在0°C、 15°C及45°C时的溶解度数据列在表1中,据此 数据绘成溶解度图和折光率一组成图于图1~ 3。

表1 三元体系Na,B,O,-NaHCO,-H,O 等温溶解度数据表

Table 1 The isothermal sulubility data of ternary system $Na_2B_4O_7$ - $NaHCO_3$ - H_2O_3

100	N⁰	液相组成(g/100g)			湿渣组成(g/100g)			
<i>17</i> C		Na ₂ B ₄ O ₇	NaHCO	3 H ₂ O	Na ₂ B ₄ O ₇	NaHCO) ₃ H ₂ O	平衡 面相组成
	1	1.18	0.00	98.82	33.67	0.00	66.33	$Na_2B_4O_7 \cdot 10H_2O$
	2	1.00	2.99	96.01	31.62	1.02	67.36	$Na_2B_4O_7 \cdot 10H_2O$
	3	0.98	6.00	93.02	26.48	3.01	70.51	$Na_2B_4O_7 \cdot 10H_2O + NaHCO_3$
	4	0.98	6.00	93.02	24.82	9.08	66.10	$Na_2B_4O_7 \cdot 10H_2O + NaHCO_3$
0	5	0.98	6.00	93.02	20. 57	20.91	58.52	$Na_2B_4O_7 \cdot 10H_2O + NaHCO_3$
	6	0.98	6.00	93.02	9.99	33.94	43.93	$Na_2B_4O_7 \cdot 10H_2O + NaHCO_3$
	7	0.98	6.00	93.02	5.78	40.08	54.14	$Na_2B_4O_7 \cdot 10H_2O + NaHCO_3$
	8	0.98	6.00	93.02	0.99	41.97	57.04	NaHCO ₃
	9	0.00	6.51	93. 49	0.00	46.44	53.56	NaHCO ₃
	1	2.02	0.00	49.49				Na ₂ B ₄ O ₇ • 10H ₂ O
	2	1.98	3.02	48.72	17.02	2.01	80.97	$Na_2B_4O_7 \cdot 10H_2O$
	3	1.82	7.01	47.69	16.32	5.02	78.66	$Na_2B_4O_7 \cdot 10H_2O$
	4	1.63	9.41	47.08	18.62	6.48	74.90	$Na_2B_4O_7 \cdot 10H_2O$
15	5	1.63	9.41	47.08	16.11	14.03	69.81	$Na_2B_4O_7 \cdot 10H_2O + NaHCO_3$
	•6	1.63	9.41	47.08	0.18	22.82	71.00	$Na_2B_4O_7 \cdot 10H_2O + NaHCO_3$
	7	1.63	9.41	47.08	1.01	37.64	61.35	NaHCO ₃
	8	0.88	8.69	47.49	0.52	35.84	63.64	NaHCO ₃
	9	0.00	8.32	47.83				NaHCO ₃
	1	7.14	0.0	92.86				Na ₂ B ₄ O ₇ • 10H ₂ O
	2	6.50	5.01	8.49	20.98	3.92	75.10	$Na_2B_4O_7 \cdot 10H_2O$
	3	6.23	8.64	85.13	21.12	6.01	72.87	$Na_2B_4O_7 \cdot 10H_2O$
	4	6.40	10.78	82.55	18.01	8.45	73.54	$Na_2B_4O_7 \cdot 10H_2O + NaHCO_3$
45	5	6.17	11.35	82.48	16.82	13.00	70.18	$Na_2B_4O_7 \cdot 10H_2O + NaHCO_3$
	6	6.37	11.00	82.63	11.00	21.02	67.98	$Na_2B_4O_7 \cdot 10H_2O + NaHCO_3$
	7	6.65	11.08	82.27	5.02	34.02	60.96	$Na_2B_4O_7 \cdot 10H_2O + NaHCO_3$
	8	4.66	11.28	84.06	3.81	37.11	59.08	NaHCO ₃
	9	3.50	11.45	85.05	2.98	33. 42	63.60	NaHCO ₃
	10	0.00	12.30	87.70				NaHCO ₃

从图1~3可以看出,体系N $a_2 B_4 O_7$ -NaHCO₃-H₂O在0°C、15°C、45°C时均属简单 共饱型体系,溶解度曲线有两支,分别对应平衡 固相为N $a_2 B_4 O_7$ · 10H₂O和NaHCO₃,其相应双 饱析出的饱和溶液组成(N $a_2 B_4 O_7 \%$ mass, NaHCO₃%mass)依次成为:0.98,6.00(0°C); 1.63,9.41(15°C);6.40,11.05(45°C)。相应该 体系的饱和溶液折光率一组成图(45°C)也具 有与溶度曲线变化相一致的特点。

就等温截面图而言,Na₂B₄O₇ · 10H₂O均比 NaHCO₃ 的单饱区大。随温度升高,Na₂B₄O₇ · 10H₂O和NaHCO₃相应溶解度线都向组分图底 边下压,但Na₂B₄O₇ · 10H₂O比NaHCO₃有较高 幅度的溶解度线下移趋势,这与Na₂B₄O₇ · 10H₂O的溶解度随温度的增加显著相一致。

2.2 三元体系NaBO,-NaCO,-H,O 0°C、15°C 及45°C时的等温溶解度

三元体系NaBO₂-NaCO₃-H₂O 0°C、15°C、 45°C时的溶解度和饱和溶液折光性质测定结 果,列在表2中,绘制出相应的溶解度图和饱和 溶解液折光率一组成图为图3~6。

.

<i>t∕°</i> C	№	液相组成(g/100g)			湿渣组成(g/100g)			
		NaBO ₂	NaCO ₃	H ₂ O	NaBO ₂	NaCO ₃	H ₂ O	半衡固相组成
	1	14.16	0.00	85.84	34.67	0.00	65.33	NaBO ₂ • 4H ₂ O
	2	13.32	2.83	83.85	28.00	1.51	70.49	$NaBO_2 \cdot 4H_2O$
	3	12.57	4.51	83. 92	30.16	2.62	67.02	$NaBO_2 \cdot 4H_2O$
	4	12.57	4.51	83. 92	23.26	9.48	67.26	$NaBO_2 \cdot 4H_2O + Na_2CO_3 \cdot 10H_2O$
	5	12.57	4.51	83. 92	12.99	17.88	69.13	$NaBO_2 \cdot 4H_2O + Na_2CO_3 \cdot 10H_2O$
0	6	12.57	4.51	83.92	7.24	18.72	74.04	$Na_2CO_3 \cdot 10H_2O$
	7	11.70	4.62	83.68	5.11	12.20	82.69	$Na_2CO_3 \cdot 10H_2O$
	8	10.06	4.93	85.01	5.08	20.07	74.85	$Na_2CO_3 \cdot 10H_2O$
	9	7.82	5.23	86.95	3. 22	23.31	73.47	$Na_2CO_3 \cdot 10H_2O$
	10	5.47	5.38	89.15	2.49	23.26	74.25	$Na_2CO_3 \cdot 10H_2O$
	11	2.88	6.29	90.83	1.34	21.48	77.18	Na ₂ CO ₃ • 10H ₂ O
	12	0.00	6.40	93.60	0.00	27.51	72.49	$Na_2CO_3 \cdot 10H_2O$
15	1	18.38	0.00	81.62				NaBO ₂ • 4H ₂ O
	2	17.60	1.58	80.82	26.22	1.98	71.80	$NaBO_2 \cdot 4H_2O$
	3	16.02	5.00	78.98	23.18	3.88	72.94	NaBO ₂ • 4H ₂ O
	4	14.08	8.72	77.20	25.98	6.22	67.80	$NaBO_2 \cdot 4H_2O$
	5	13.20	11.28	75.52	23.31	8.78	67.91	$NaBO_2 \cdot 4H_2O$
	6	13.25	11.58	75.17	18.72	12.31	68.97	$NaBO_2 \cdot 4H_2O + Na_2CO_3 \cdot 10H_2O$
	7	13.23	11.43	75.34	13.11	16.01	70.88	$NaBO_2 \cdot 4H_2O + Na_2CO_3 \cdot 10H_2O$
	8	13.23	11.43	75.34	9.33	23.92	66.75	$Na_2CO_3 \cdot 10H_2O$
	9	8.68	10.88	80.44	6.2	16.43	76.66	$Na_2CO_3 \cdot 10H_2O$
	10	5.02	10.98	84.00	3.42	17.82	78.76	$Na_2CO_3 \cdot 10H_2O$
	11	2.21	11.62	87.17	1.82	16.21	81.97	$Na_2CO_3 \cdot 10H_2O$
	12	0.00	10.82	89.18				$Na_2CO_3 \cdot 10H_2O$
	1	32.05		67.95				NaBO ₂ • 4H ₂ O
	2	29.50	4.82	65.68	36.10	3.20	60.70	NaBO ₂ • 4H ₂ O
	3	27.10	8.94	63.96	37.38	4.65	57.97	NaBO ₂ • 4H ₂ O
	4	25.32	13.82	60.86	33.86	7.64	58.50	NaBO ₂ • 4H ₂ O
	5	24.80	16.58	58.62	35.92	9.10	54.98	$NaBO_2 \cdot 4H_2O + Na_2CO_3 \cdot H_2O$
	6	24.68	16.58	58.27	30. 01	16.04	53.95	$NaBO_2 \cdot 4H_2O + Na_2CO_3 \cdot H_2O$
45	7	24.98	16.58	58.27	26.11	23.24	50.65	$NaBO_2 \cdot 4H_2O + Na_2CO_3 \cdot H_2O$
	8	24.98	16.58	58.27	19 . 2 1	32.04	51.25	$NaBO_2 \cdot 4H_2O + Na_2CO_3 \cdot H_2O$
	9	19.21	20.04	60.75	13.21	41.42	45.37	$Na_2CO_3 \cdot H_2O$
	10	17.24	20. 98	61.78	10.88	45.21	43.91	Na ₂ CO ₃ • H ₂ O
	11	12.88	23.45	63.67	8.24	44.88	46.88	$Na_2CO_3 \cdot H_2O$
	12	8.23	27.00	64.77	6.11	41.44	52.45	$Na_2CO_3 \cdot H_2O$
	13	3.64	30.62	65.74	2.11	51.98	45.91	$Na_2CO_3 \cdot H_2O$

表2 三元体系NaBO₂-Na₂CO₃-H₂O 等温溶解度数据表 Table 2 The isothermal solubility data of ternary system NaBO₂-Na₂CO₃-H₂O

.

Fig. 5 Solubility diagram (a) and refractive-index diagram (b) of $NaBO_2$ - $NaCO_3$ - $H_2O(15^{\circ}C)$

Fig. 6 Solubility diagram (a) and refractive-index diagram (b)of NaBO₂-NaCO₃-H₂O(45°C)

由图4~6可见,该三元体系在0°C、15°C及 45°C时亦属于简单共饱型体系,溶解度曲线有 两支,偏硼酸盐一支在0°C~45°C范围内平衡 固相始终是水合盐NaBO₂。4H₂O,但另一组分

在0°C和15°C对应固相Na₂CO₃ • 10H₂O的单饱 析出,在45°C时则对应固相Na₂CO₃ • H₂O的单 饱和析出。两支曲线交汇点对应2个固相的双饱 和析出,其组成(NaBO₂,Na₂CO₃% mass)在 0°C、15°C及45°C时依次为:12.57,4.51; 11.43,13.23;24.88,16.58。其相反应可表示 为:

L(饱和溶液)=NaBO₂・4H₂O+Na₂CO₃・ nH₂O+H₂O ↑ (0°C和15°C,n=10;45°C,n=1)

参考文献:

- [1] 郑喜玉,唐渊,等. 西藏盐湖(M),北京:科学出版社, 1988,
- [2] 陈运生,等,物理化学分析(M).北京:高等教育出版社 出版,1987.
- [3] A.克山,成思危.硼酸盐在水溶液中的合成及其研究(M).北京:科学出版社,1962.52-53
- [4] 武汉大学,分析化学实验(M).第三版,北京:高等教育 出版社出版,1994.

Study on the Isothermal Solubility for the Ternary System $Na_2B_4O_7$ - $NaHCO_3$ - H_2O and Na_2CO_3 - $NaBO_2$ - H_2O

YANG Qin ,LI Jun,LI Heng-xin, ZHANG Feng-xing

(Department of Chemistry, Northwest University, Xi'An 710069, China)

Abstract: In order to study on the quaternary system $Na_2B_4O_7$ - Na_2CO_3 - $NaHCO_3$ - $NaBO_2$ - H_2O , for its boundary System $Na_2B_4O_7$ - $NaHCO_3$ - H_2O and Na_2CO_3 - $NaBO_2$ - H_2O , we determined solubilities and refractive index in these two system at 0° C, 15° C and 45° C. These two system are simple eutonic type.

Key words; solubility diagram; ternary system; sodium borate; sodium cobornate