Li₂O •nB₂O₃(n=4,5)-20%LiCl-H₂O 过饱溶液 20℃结晶动力学研究

朱黎霞,高世扬,夏树屏

(中国科学院青海盐湖研究所西安二部,陕西西安 710043)

摘要:采用结晶动力学方法对Li₂O:B₂O₃=1:4和1:5在20%LiCl-H₂O中的过饱的溶液在20℃时的 结晶动力学过程进行了研究,两种不同Li₂O:B₂O₃(摩尔比)配比的过饱和溶液均析出LiB₅O₈•5H₂O 一种固相,通过X-ray 粉末衍射、IR光谱和热分析对结晶析出固相进行了表征。同时拟合给出了 结晶动力学方程,并对结晶反应机理进行了探讨。

关键词:结晶动力学;锂硼酸盐;过饱和溶液

中图分类号:0643.12 文献标识码:A 文章编号:1008-858X(2002)01-0061-05

硼酸盐存在明显的过饱和溶解度现象,对 镁硼酸盐在 MgCl₂(MgSO₄)—H₂O 中的过饱和溶 液,在不同 MgCl₂和 MgSO₄浓度及不同温度条 件下的结晶动力学过程进行了报道^[1-5],获得 一些新结果。根据结晶路线勾绘出 MgO—B₂O₃ -28% MgCl₂—H₂O 体系 20℃时的热力学非平 衡态相图^[6]。这些工作对于认识水盐体系过饱 和溶解度现象具有重要意义,同时对青藏高原 水合镁硼酸盐的物理化学成盐提供依据。

青藏高原某些硫酸镁亚型硼酸盐盐湖卤水, 经蒸发浓缩析出钠盐和钾盐以后,可以看作 Li^+ , $Mg^{2+}//Cl^-$, SO_4^{2-} , $B_4O_7^{2-}$ —H₂O 体系。为 了从盐湖中分离提取锂盐,进一步认识和了解不 同硼酸盐水溶液的过饱和溶解度现象,本文对 $Li_2O \cdot nB_2O_3(n=4 \ \pi \ 5) - 20\%$ LiCl — H₂O 过饱和 溶液 20℃时的结晶动力学过程进行了研究。

1 实验

1.1 试剂和仪器

LiOH•H₂O 为天津化学试剂厂生产的分析 纯试剂,LiCl•H₂O 和 H₃BO₃ 为西安化学试剂厂 生产的分析纯试剂,H₂O 为二次蒸馏水。PHS -10A 数字酸度计(萧山科学分析仪器厂生 产),用 0.05mol•L⁻¹KHC₈H₄O₄(20℃时 pH = 4.00)标准溶液、0.025mol•L⁻¹KH2PO₄ + $0.025mol•L⁻¹Na_2HPO_4(20℃时 pH = 6.88)标准$ $溶液和 0.01mol•L⁻¹Na_2B_4O₇(20℃时 pH =$ <math>9.88)标准溶液校正 pH 计。5mL 比重瓶的容积 用蒸馏水进行校正,计算密度时使用校正容积。 X⁻ray 粉末衍射仪为日本理学 DMAX/Ⅲ,Fe 靶,工作电压 40kV,扫描速率 6°/min,IR 光谱仪 为 PE-683(KBr 压片)。

1.2 **分析方法**

Li₂O 的测定以甲基红作为指示剂,用 HCl 标 准溶液滴定。B₂O₃ 的测定采用甘露醇法,用 NaOH 标准溶液滴定。LiCl 的测定以二苯偶氮碳酰肼和 溴酚蓝作为指示剂,用 Hg(NO₃)2标准溶液滴定。

基金项目:国家自然科学基金资助课题(29971032)

作者简介:朱黎霞(1966-),女,助研,主要从事溶液化学研究. (C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnl

收稿日期:2001-12-10

1.3 **实验**

按Li₂O₁B₂O₃(摩尔比)=1:4和1:5,LiCl浓度 为20%,分别称取需要量的LiOH•H₂O、H₃BO₃,LiCl •H₂O和二次蒸馏水。首先用二次蒸馏水将LiCl• H₂O完全溶解,然后分几次加入LiOH•H₂O,最后 加入硼酸搅拌使其完全溶解。用4[#]玻璃砂芯漏 斗过滤,滤液转入带磨口塞的反应瓶中,放入20± 0.1℃恒温水槽中。当溶液中开始析出固相时,每 隔一定时间取液样,测定密度、pH和化学组成。 待溶液化学组成不再变化时,进行固液分离,固相 依次用乙醇、乙醚洗涤后,放入真空干燥器中恒重,用作物相鉴定和化学分析。

2 结果与讨论

2.1 **结晶析出固相**

n(Li₂O): *n*(B₂O₃)=1:4 和 1:5 在 20%LiCl− H₂O 中的过饱的溶液在 20℃时均结晶析出 LiB₅O₈ •5H₂O 一种固相, 固相化学分析结果列于表 1, 实 验值与理论值相吻合。

表 1 析出固相的化学组成 Table 1 Chemical composition of solid phases

· · ·												
	Ch	mol ratio										
Li2O:B2O3	Li ₂ O	B_2O_3	H ₂ O	Li ₂ O ₃ B ₂ O ₃ H ₂ O			Formula					
mol/mol	w/%	w/%	w/%	n/mol	n/mol	n/mol						
1.4	5.42	62.56	32.02	1	4.95	9.81	$Li_2O \bullet 5B_2O_3 \bullet 10H_2O$					
1.5	5.36	62.02	32.62	1	4.97	10.01	$Li_2O \bullet 5B_2O_3 \bullet 10H_2O$					
Theoretical	5.35	62.37	32.28	1	5.00	10.00	$Li2O \bullet 5B_2O_3 \bullet 10H_2O$					

图1 结晶析出固相的 XRD **Fig**·1 XRD patterns of the crystallized solid phase A; n(Li₂O); n(B₂O₃)=1,4 B; n(Li₂O); n(B₂O₃)=1,5

结晶析出固相的 X⁻⁻ray 粉末衍射图见图 1, 图 1-A 和 1-B 衍射峰的位置及强度完全一致, 说明结晶析出固相是同一种物质,与 JCPD8 中的 LiB₅O₈•5H₂O 的谱图一致。图 2 中 A 和 B 红外光 谱图完全相同,也说明结晶析出固相组成相同,与 文献^[8]报道的 LiB₅O₈•5H₂O 红外光谱结果一致。

2.2 **结晶动力学**

图 2 结晶析出固相的 IR 光谱 Fig·2 IR—spectra of the crystallized solid phase A:n(Li₂O):n(B₂O₃)=1:4 B:n(Li₂O):n(B₂O₃)=1:5

Li₂O •nB₂O₃(n=4,5) -20%LiCl $-H_2$ O 过饱和溶液 20℃时的结晶动力学实验结果列于表(1),图 3 为 $n(Li_2O): n(B_2O_3) = 1:4$ 和 1:5 在 20%LiCl $-H_2O$ 中过饱和溶液的结晶动力学曲线。结晶过程一般

(C)1994-2022 China Academic Journal Electronic 四诱导期。晶体生长期和结晶于衡期三价阶段组w.cr

成。诱导期即形成晶核阶段,没有晶体析出,液相 组成不发生变化,相应于平行于时间轴的开始阶 段。

 $(c_{B_2O_3} t)$

Fig.³ $c_{B_2O_3} t$ curves of Li₂O •nB₂O₃

-20%LiCl $-H_2O$ supersaturated solution at 20° C

A: $n(\text{Li}_2\text{O}): n(\text{B}_2\text{O}_3) = 1$.4 B: $n(\text{Li}_2\text{O}): n(\text{B}_2\text{O}_3) = 1$.5 晶体生长期是结晶过程的主要阶段,晶体不断生 长。结晶平衡期液相浓度不再变化,达到固液结 晶平衡,此时液相浓度是热力学平衡溶解度 $(t=\infty): n=4$ 的诱导期长于n=5,这是由于n=5 时的过饱和度大于 n=4。

 $n(\text{Li}_{2}\text{O}): n(B_{2}\text{O}_{3})=1:4$ 和1:5的过饱和溶液 在结晶过程中 pH 值逐渐升高。

2.2.2 结晶动力学方程

采用文献^[1]中的数学模型和计算方法对 $c_{B_2O_3}$ -t实验数据进行动力学方程拟合。以计算相 对误差一般不大于 5%,热力学平衡浓度计算值 $c \sim$ 小于结晶终点浓度且相差不太大为动力学方 程选取标准。结晶析出 LiB₅O₈•5H₂O 的结晶动力 学方程为:

 $-dc/dt = 3.5145(0.9220 - c)^{2/3}(c - 0.6100)^3$ (n=4)

 $-dc/dt = 0.2226(0.6820 - c)^{2/3}(c - 0.2561)^2$ (n=5)

由上述结晶动力学方程可以看出,结晶反应 均受控于多核表面控制生长。

饱和溶液中存在多种硼氧配阴离子,如: $B(OH)_{3}$, $B(OH)_{4}^{-}$, $B_{2}O(OH)_{6}^{2-}$, $B_{3}O_{3}(OH)_{4}^{-}$, $B_{4}O_{5}(OH)_{4}^{2-}$ 、 $B_{5}O_{6}(OH)_{4}^{-}$ 和 $B_{6}O_{7}(OH)_{6}^{2-}$ 。水溶 液中硼浓度高时形成多聚硼氧配阴离子之间的平 衡,这种平衡受硼浓度、pH 和温度等因素影响而 发生移动。一般认为硼浓度低而电解质浓度高, 有利于形成三聚硼氧配阴离子,而硼浓度高电解 质浓度低时,有利于形成四聚硼氧配阴离子。高 世扬院士领导的研究集体,利用差示FT-IR 红外 光谱研究硼酸盐过饱和溶液中硼氧配阴离子的存 在形式[8-10],在室温模拟合成了四硼酸盐和六硼 酸盐过饱和溶液,分别结晶析出 MqB4O7 •9H2O 和 MqB6O10•7H2O。将这两种固体的振动光谱与过饱 和溶液中的振动光谱相比较可以看出,几乎所有 的硼氧配阴离子的振动峰都非常接近,这说明硼 酸盐在溶液中结晶析出以前,首先形成与其晶体 结构相同的结构模块,然后堆砌形成晶体。 LiB5O8•5H2O的结构式为Li[B5O6(OH)4]•3H2O^[11], 因而在结晶析出 LiB₅O₈•5H₂O 的过饱和溶液中必 然存在 $[B_5O_6(OH)_4]^-$ 硼氧配阴离子。 LiB5O8 •5H2O的结晶反应机理为:

 $B(OH)_3 + 16H_2O \rightarrow B(OH)_4 + 8H_3O^+$

$$2B_{4}O_{5}(OH)_{4}^{2-}+4OH^{-}+10H_{2}O$$

+
 $2B(OH)_{3}$
↓
 $2B(OH)_{3}$
↓
 $2B_{5}O_{6}(OH)_{4}^{-}+2OH^{-}+2H_{2}O$
+
 $Li_{2}O+H_{2}O\rightarrow 2Li^{+}+2OH^{-}$
+ +
 $6H_{2}O - 2B(OH)_{3}\rightarrow 2B(OH)_{4}^{-}$
↓
 $2Li[B_{5}O_{6}(OH)_{4}]\cdot 3H_{2}O$
结晶析出 $Li[B_{5}O_{6}(OH)_{4}]\cdot 3H_{2}O$ 的过程中,生

成 $B(OH)_4$ 使溶液pH略有升高,这与实验结果一致,溶液中硼氧配阴离子主要存在形式可能为 $B_4O_5(OH)_4^{2-}$ 和 $B_5O_6(OH)_4^{-}$ 。

2.3 结晶反应机理

(C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnl

表 2 Li₂O •nB₂O₃-20%LiCl-H₂O 过饱和溶液 20℃结晶过程中溶液组成

Table² Chemical composition of Li₂O •nB₂O₃-20%LiCl-H₂O supersaturated solution during crystallization of Li-borates at 20°C

			Liqu	iid Compos					
$n(\text{Li}_2\text{O})$: $n(\text{B}_2\text{O}_3)$	No	Time	Li ₂ O	B_2O_3	LiCl	$c_{\mathrm{B_2O_3}}$	Density	pН	Solid
		t/hr	w/%	w/%	w/%	$\operatorname{mol} {}^{\mathbf{-}1}$	$kg \cdot L^{-1}$		
1:4	1	0	0.60	5.54	19.54	0.925 5	1.163 0	5.18	
	2	1.0	0.60	5.52	19.50	0.922 0	1.162 9	5.17	$LiB_5O_8 \bullet 5H_2O$
	3	2.0	0.60	5.52	19.54	0.921 9	1.162 8	5.16	$LiB_5O_8 \bullet 5H_2O$
	4	3.0	0.60	5.50	19.52	0.918 5	1.1627	5.18	$LiB_5O_8 \bullet 5H_2O$
	5	4.0	0.60	5.51	19.54	0.919 8	1.162 3	5.16	LiB5O8 •5H2O
	6	5.0	0.59	5.45	19.53	0.909 5	1.161 8	5.18	LiB5O8 •5H2O
	7	6.0	0.59	5.43	19.56	0.905 9	1.161 5	5.20	LiB5O8 •5H2O
	8	7.0	0.58	5.37	19.64	0.895 7	1.161 3	5.24	LiB5O8 •5H2O
	9	9.0	0.57	5.22	19.63	0.870 4	1.160 9	5.26	LiB5O8 •5H2O
	10	10.0	0.57	5.13	19.79	0.854 9	1.160 2	5.28	LiB5O8 •5H2O
	11	11.0	0.56	5.01	19.74	0.834 3	1.159 3	5.30	LiB5O8 •5H2O
	12	28.0	0.52	4.57	19.86	0.759 3	1.1567	5.38	LiB5O8 •5H2O
	13	46.0	0.50	4.34	19.91	0.720 0	1.155 1	5.45	LiB5O8 •5H2O
	14	48.0	0.49	4.26	19.97	0.706 6	1.1547	5.48	LiB5O8 •5H2O
	15	52.0	0.49	4.27	19.97	0.708 0	1.154 4	5.52	LiB5O8 •5H2O
	16	70.0	0.49	4.25	19.98	0.704 7	1.154 5	5.53	LiB5O8 •5H2O
	17	100.0	0.49	4.23	19.99	0.701 4	1.154 4	5.52	$LiB_5O_8 \bullet 5H_2O$
1 <u>.</u> 5	1	0	0.35	4.13	19.94	0.683 7	1.152 5	4.85	
	2	3.5	0.35	4.12	19.95	0.682 0	1.152 4	4.85	$LiB_5O_8 \bullet 5H_2O$
	3	7.0	0.34	4.05	19.45	0.670 2	1.152 1	4.86	$LiB_5O_8 \bullet 5H_2O$
	4	10.5	0.34	4.03	19.96	0.6667	1.151 8	4.88	$LiB_5O_8 \bullet 5H_2O$
	5	22.0	0.31	3.73	20.10	0.616 1	1.149 9	4.90	$LiB_5O_8 \bullet 5H_2O$
	6	25.0	0.30	3.62	20.13	0.597 5	1.149 2	4.90	$LiB_5O_8 \bullet 5H_2O$
	7	28.0	0.30	3.55	20.11	0.585 7	1.148 7	4.92	$LiB_5O_8 \bullet 5H_2O$
	8	31.0	0.29	3.46	20.18	0.570 6	1.148 2	4.94	$LiB_5O_8 \bullet 5H_2O$
	9	34.5	0.28	3.32	20.22	0.547 0	1.147 0	4.97	$LiB_5O_8 \bullet 5H_2O$
	10	46.5	0.25	3.00	20.33	0.493 4	1.145 1	5.03	LiB5O8 •5H2O
	11	52.0	0.24	2.91	20.38	0.478 3	1.144 2	5.06	LiB5O8 •5H2O
	12	55.0	0.24	2.90	20.41	0.476 6	1.144 2	5.08	LiB5O8 •5H2O
	13	70.5	0.22	2.61	20.49	0.428 4	1.142 7	5.11	LiB5O8 •5H2O
	14	78.5	0.21	2.54	20.50	0.416 6	1.141 8	5.14	LiB5O8 •5H2O
	15	95.5	0.19	2.32	20.56	0.380 1	1.140 5	5.19	LiB5O8 •5H2O
	16	101.5	0.18	2.31	20.64	0.378 4	1.140 3	5.20	LiB5O8 •5H2O
	17	166.5	0.15	1.91	20.74	0.312 2	1.137 8	5.30	LiB5O8 •5H2O
	18	174.5	0.15	1.87	20.78	0.305 5	1.137 5	5.32	LiB5O8 •5H2O
	19	190.5	0.15	1.85	20.79	0.302 2	1.137 4	5.32	LiB5O8 •5H2O

参考文献:

 [3] 朱黎霞,高世扬,夏树屏,张逢星、MgO •2B₂O₃-18% MgCl₂-H₂O 过饱和溶液结晶动力学[J].无机化学学报,2000,16(5): 722-728.

[4] 马玉涛,高世扬,夏树屏.硼酸盐化学XXXI.MgO•2B2O3-18%

- 高世扬,陈学安,夏树屏.²MgO •²B₂O₃ MgCl₂ H₂O 结晶动力学 研究[J].化学学报,1990,48:1049-1056.
- [2] 高世扬,李气新,夏树屏. MgO-B2O3-MgCl2-H2O浓盐溶液 在 20°C时硼酸盐的结晶动力学研究[J]. 无机化学学报, 1984, 4
- [5] 马玉涛,高世扬,夏树屏. MgO•3B2O3-18% MgSO4-H2O 过饱

McSO4-H2O 过饱和溶液结晶动力学研究[J] 高等学校化学

(C)1994-2022 China Academic Journal Electronic Pub和密游结晶动力差研究[1]:物理化学学报,2001,17(11),1021

学报,2002,23(1):18-21.

-1026.

- [6] 高世扬,姚占力,夏树屏.MgO-B2O3-28%MgCl2-H2O体系 20℃热力学非平衡态液固相关系研究[J].化学学报,1994,52, 10-22.
- [7] 李军.水合硼氧酸盐化学:硼同位素化学、振动光谱学和热化 学[D].兰州大学博士论文,1994.
- [8] Jia Yongzhong, Gao Shiyang, Xia Shuping and Li Jun·FT—IR spectroscopy of supersaturated aqueous solutions of magensium borate[J]. spectrochimica Acta·Part A, 2000, 56:1291—1297.
- [9] 贾永忠,高世扬,夏树屏,李军,NaB508,•5H2O 过饱和溶液中硼 氧配阴离子的 FT-IR 光谱分析[J].无机化学学报,1999,15 (6):766-771.
- [10] 高世扬,夏树屏,朱黎霞,含硼水溶液中硼氧配阴离子存在形式及其相互作用[J].陕西师范大学学报,2000,28(3):70-78.
- [11] Germlin Handbook of Inorganic Chemistry-B Boron Compounds, lstsupplement vol. 1[M]. Berlin, Heidelberg. New York ;Springer—Verlag, 1980. 224.

Chemistry of Borate Crystallization Kinetics of Li—borates from Li₂O•nB₂O₃(n=4,5)-20% LiCl—H₂O Supersaturated Solution at 20°C

ZHU Li -xia, GAO Shi -yang, XIA Shu - ping

(Xi'an branch, Institute of salt lakes, Chinese Academy of Sciences, Xi'an 710043 China)

Abstract :The Li₂O •nB₂O₃(n=4,5)-20%LiCl $-H_2O$ supersaturated solution were prepared and kept in thermotat at $20\pm0.1^{\circ}$ C. The crystallization processes of LiB₅O₈ •5H₂O from above supersaturated solution have been studied by kinetic method. The solid phases were characterized by XRD, IR-spectra and Chemical analysis. The crystallization kinetic equation of these compounds were fitted with experimental data by computer, and the crystal-lization reaction mechanism has been proposed.

Key words: Li-borate; Crystallization kinetics; Supersaturated solution