氯化钠浮选剂最佳合成条件研究

王爱丽,李海民,张全有,孟瑞英,杨海云(中国科学院青海盐湖研究所,青海西宁 810008)

摘要: 讨论了二种 N-烷基吗啉类氯化钠浮选剂最佳浮选性能的合成条件,给出了研究结果。

关键词:N一烷基吗啉;浮选;氯化钠浮选剂

中图分类号:TD923.1 文献标识码:A 文章编号:1008-858X(2003)02-0051-05

我国的钾盐矿大多数是钾钠共生矿,因此 用钾盐矿制备钾肥时,重要的是钾钠分离。在 浮选法制备钾肥的工艺中,最重要的是选择合 适的浮选剂。20世纪50年代末期至60年代以 来, 氯化钠(NaCl)浮选剂有了新的发展: 美国通 用矿山化学公司 James Leonand Keen 等用 N-烷基吗啉从 NaCl 和氯化钾(KCl)的混合物中优 先浮选 NaCl,分别向法国、西德、美国申请并获 得了专利权。民主德国的许多研究人员相继提 出用烷基吗啉、脂肪酰基吗啉或吗啉脂肪酸酯 作为从含钾矿物或其他混合物中浮选 NaCl 的 浮选剂,均在本国获得了专利权[1-3]。但我国 对NaCl浮选剂的开发研究工作开始的很晚。 1976年中国科学院青海盐湖研究所的马文展 等(盐湖所内部资料)首次合成了烷基吗啉,并 用于从察尔汗盐湖光卤石矿、大柴旦盐湖钾混 盐矿等矿中选出 NaCl,得到了很好的结果。但 由于当时科研所的科研性质着眼于应用基础技 术开发,而不是转化为生产力,所以该浮选剂研 究成功后一度被搁置,未用于工业化实践。后 来由于生产需要,在近几年青海省化工设计研 究所、江苏省化工部连云港设计研究所等单位 才对 NaCl 浮选剂的产业化进行了研究, 且取得 很好的结果。2001 年华东理工大学[4] 优化了 N 一烷基吗啉的合成方法,以碱金属的氢氧化物

或氧化物代替碳酸氢钠,提高了总产率,降低了生产成本。

研究结果表明:不同温度、不同加料顺序下合成的烷基吗啉其浮选效果是不同的,而且只有在一定温度范围内、一定的加料顺序下合成的烷基吗啉才具有浮选效果。本文所合成的烷基吗啉其合成温度比徐勇^[5]的实验温度范围宽。本文探讨了不同温度、不同加料顺序下合成的两种碳链长度的 N一烷基吗啉类药剂浮选除 NaCl 的浮选评价,确定了具有最佳浮选性能的 N一烷基吗啉的合成条件。

1 实验

1.1 实验方法

本实验在 3 个温度、不同加料顺序条件下分别合成了两种碳链长度的 N 一烷基吗啉,并通过浮选评价实验来确定 N 一烷基吗啉的最佳合成条件及烷基吗啉类 NaCl 浮选剂的最佳碳链长度。

1.2 **合成反应历程**

本实验的反应方程式为:

$$RBr + HN(CH_2CH_2)_2O \xrightarrow{NaHCO_3} H_2O$$

RN(CH₂CH₂)₂O+NaBr+H₂O

R 为烷基

从氯代烷的反应角度考虑,该反应为亲核 反应。伯氯代烷易发生 SN2 历程,叔氯代烷易 发生 SN1 历程。SN2 历程中氯代烷不发生异构 化现象,SN1 历程中氯代烷易发生异构化现象。在本反应中得到的是直链化合物,所以该反应 为 SN2 历程。从胺的烷基化角度考虑,所有的 烷基化反应均为 SN2 历程,所以该反应的历程 为:

$$HN(CH_2CH_2)_2O \xrightarrow[H_2O]{NaHCO_3} O(CH_2CH_2)_2N \xrightarrow{-RCH_2Br} \left[O(CH_2CH_2)_2N \cdots CH_2 \cdots Br\right]^{\sharp} \longrightarrow O(CH_2CH_2)NCH_2R$$

1.3 合成实验步骤

先加入溴代 n 烷(或吗啉), 后加催化剂、水,搅拌,升温,回流。当温度上升到实验温度时滴加吗啉(或溴代 n 烷), 规定时间内加完,继续回流数小时。有机层用饱和食盐水洗涤后用无水氯化钙干燥。同样方法制备 m 烷基吗啉。

1.4 浮选实验

所有浮选实验是在原矿料浆浓度、药剂用量、浮选时间都相同的条件下进行的,只进行一次粗选。重复三次,取平均。

浮选机:外挂式浮选机;料浆浓度:27%;药剂用量:每300克原矿加10滴药剂。

浮选时间:8min。

2 药剂浮选评价

离子分析方法见《卤水和盐的分析方法》^{*},Na···差减法。

2.1 以 n 烷基吗啉为浮选剂的结果

以 n 烷基吗啉为浮选剂的钠、氯、钾回收率 见表 1, 浮选结果见表 2。

表1 以 n 烷基吗啉为浮选剂的钠、氯、钾回收率

Table 1 Recovery rates of sodiam chloride and potassium with n—alkylmorpholine as the flotation reagent

药剂编号	1	2	3	4	5	6
$\varepsilon_{\mathrm{Na}}/\sqrt[9]{_0}$	92.41	86.05	92.89	85.87	77.34	82.61
$\epsilon_{ m Cl}/\sqrt[9]{_0}$	83.02	77.08	84.63	78.82	70.45	74.22
$\mathbf{E}_{\mathbf{K}}/\%$	57.28	57.27	49.10	53.17	58.29	58.07

从表 2 可以看出, 以溴代 n 烷为基相滴加吗啉条件下合成的 n 烷基吗啉比以吗啉为基相滴加溴代 n 烷条件下合成的 n 烷基吗啉浮选效果好。同一加料顺序时, 温度为 t_1 [©] 时的 n 烷基吗啉浮选效果好, 反应温度为 t_2 [©] 时的 n 烷基吗啉浮选效果次之, 温度为 t_2 [©] 时的 n 烷基吗啉浮选效果炭之, 温度为 t_2 [©] 时的 n 烷基吗啉浮选效果最差。从表 1 可以看出, 虽然 3 号药剂与 1 号药剂对钠的回收率差不多, 但钾的回收率 1 号药剂比 3 号药剂要高。所以综合

考虑起来,浮选效果最好的是 1 号药剂,即 n 烷基吗啉的最佳浮选条件是:反应温度 t_1 $^{\mathbb{C}}$ 时,以 溴代 n 烷为基相滴加吗啉。

2.2 以 m 烷基吗啉为浮选剂的结果

以 m 烷基吗啉为浮选剂的钠、氯、钾回收率见表 3, 浮选结果见表 4。

^{* ·} Mq²⁺ —EDTA 法测定镁

Cl⁻一汞量法测定氯

K⁺-四苯硼化钠法测定钾

表 2 以 n 烷基吗啉为浮选剂的浮选结果

Table 2 Flotation results with the reagent being n—alkylmor
--

		产	品		产品组	成 w/%		产品分布率/%				
药剂编号 	合成 ⁻ 条件	名称	质量 <i>m</i> /g	K_2SO_4	MgSO ₄	KCl	NaCl	K_2SO_4	MgSO ₄	KCl	NaCl	
1 1 基	溴代 烷为	精矿	166.3	1.06	5.79	16.52	67.61	5.63	27.85	61.88	93.56	
	基相 t ₁ ℃	尾矿	109.7	26.94	22.74	15.43	7.06	94.37	72.15	38.12	6.44	
2	溴代 烷为	精矿	153.3	1.18	5.50	16.40	68.28	5.59	25.09	60.94	86.06	
	基相 t ₂ ℃	尾矿	119	25.65	21.15	13.54	14.25	94.41	74.91	39.06	13.94	
3	溴代 烷为	精矿	180	2.77	7.38	14.93	63.88	16.52	39.41	68.16	94.05	
3	基相 t₃℃	尾矿	91	27.74	22.48	13.82	8.01	83.48	60.59	31.84	5.95	
4	吗啉 为基	精矿	161.3	2.06	6.54	16.15	66.02	13.75	32.34	64.23	91.60	
	相 t1°C	尾矿	99.7	26.38	22.14	14.55	9.80	86.25	67.66	35.77	8.40	
5	吗啉 为基	精矿	147.3	1.22	7.38	16.27	63.71	6.08	30.45	56.25	81.26	
	相 t ₂ ℃	尾矿	125	22.22	19.86	14.91	17.31	93.92	69.55	43.75	18.74	
6	吗啉 为基	精矿	153	2.23	6.49	15.37	65.51	10.85	28.69	53.34	86.64	
	相 t3℃	尾矿	121	23.18	20.40	15.06	15.03	89.15	71.31	43.66	13.36	

表3 以 m 烷基吗啉为浮选剂的钠、氯、钾回收率

Table 3 Recovery rates of sodium chloride and potassium with m—alkylmorpholine as the flotation reagent

药剂编号	7	8	9	10	11	12
$\varepsilon_{\mathrm{Na}}/\sqrt[0]{_0}$	98.45	94.08	86.84	92.33	95.07	87.14
$\epsilon_{\mathrm{Cl}}/\sqrt[6]{0}$	87.45	82.35	78.16	82.45	84.84	77.78
$\epsilon_{\rm K}/{}^0\!/_{\!0}$	49.58	52.65	64.60	50.98	48.39	60.20

表 4 结果也显示了以溴代 m 烷为基相,滴加吗啉条件下合成的 m 烷基吗啉的浮选效果最好。而同一加料顺序下反应温度分别为 t₁ ℃、t₂ ℃、t₃ ℃时合成的 m 基吗啉,其浮选效果逐渐变低,所以 7 号药剂的浮选效果最好。从表 3 也明显可以看出 7 号药剂对钠的回收率最高,即 7 号药剂的浮选效果最好。所以 m 烷基吗啉的最佳浮选条件是:反应温度 t₁ ℃时,以溴代 m 烷为基相滴加吗啉。

成的 m 烷基吗啉比 n 烷基吗啉浮选效果好,同时 n 烷基吗啉对 NaCl 的选择性稍差。浮选效果最好的 n 烷基吗啉 (尾矿中 NaCl 含量为7.06)其浮选效果也仅比 t_3 ^{\circ} 时合成的 m 烷基吗啉好(尾矿中 NaCl 含量分别为9.62,10.33)。 t_3 ^{\circ},以溴代 n 烷为基相条件下合成的 n 烷基吗啉其浮选效果也仅比 t_3 ^{\circ} 时合成的 m 烷基吗啉好,而远低于其他条件下合成的 m 烷基吗啉。

(C比较表 8.2和表面: All rights reserved. http://www.cnl

 ${f z}_{4}$ 以 ${f m}$ 烷基吗啉为浮选剂的浮选结果

Table 4	Flotaton results	with the reagent	being m = a	lkylmorpholine
I aidic -	i iotaton icsuns	with the reagen	Dung in a	шкушногриоти.

	∧ ₽ : -	产	口口口		产品组	成 w/%			产品分	布率/%	
药剂编号	合成 ⁻ 条件	名称	质量 <i>m</i> /g	K_2SO_4	MgSO ₄	KCl	NaCl	K_2SO_4	MgSO ₄	KCl	NaCl
7	溴代 烷为	精矿	185.7	3.07	6.84	14.58	64.58	17.02	37.08	66.42	98.25
	基相 t1℃	尾矿	90.3	30.77	23.87	15.06	2.37	82.98	62.92	33.58	1.75
8	溴代 烷为	精矿	174.3	2.32	6.84	14.69	65.74	12.36	33.81	62.80	95.07
	基相 t ₂ ℃	尾矿	102	28.11	22.88	14.87	5.82	87.64	66.19	37.20	4.93
9	溴代 烷为	精矿	152	1.50	5.65	13.37	69.62	7.14	25.82	54.14	90.59
	基相 t₃℃	尾矿	114.3	25.96	21.59	15.06	9.62	92.86	74.18	45.86	9.41
10	吗啉 为基	精矿	165.7	3.07	6.24	13.78	66.51	16.24	32.09	66.17	97.08
	相 t1°C	尾矿	90.7	28.93	24.12	12.87	3.65	83.76	67.91	33.83	2.92
11	吗啉 为基	精矿	170.3	3.21	6.30	13.75	66.64	16.71	34.41	72.09	96.92
	相 t ₂ ℃	尾矿	85.3	31.94	23.97	10.63	4.23	83.29	65.59	27.91	3.08
12	吗啉 为基	精矿	151.3	1.27	5.90	12.61	70.19	6.00	26.87	57.81	90.33
	相 t3℃	尾矿	110	27.39	22.09	12.66	10.33	94.00	73.13	42.19	9.67

3 结果讨论

3.1 浮选结果分析

浮选原理为浮选剂吸附在矿物上,增加了矿物的憎水性,在搅拌下使矿物随泡沫浮出,达到分离的目的。浮选剂吸附在矿物上,憎水基在外,因此憎水基的体积大小不同,浮选效果也各异。该类药剂的憎水基为烷基,长碳链的药剂较之短碳链的体积大,空间阻力大,不能有效吸附在矿物表面上,因此浮选效果差。在本实验中,Na⁺半径小于K⁺半径,n烷基吗啉的碳链比m烷基吗啉的长,因此,m烷基吗啉对Na⁺的浮选效果好,n烷基吗啉的浮选效果差。

3.2 存在的问题

- (1)反应温度上升到实验温度及保持实验 温度不变较难控制。
- (2)有机相、水相分离麻烦,特别是长碳链的烷基吗啉,因为长碳链的烷基吗啉在室温时 呈固态。
- (3)浮选实验是在室温下进行的,故很难保证每次实验浮选槽内矿浆的温度一致。

4 结论

(1)n 烷基吗啉和 m 烷基吗啉的最佳合成条件为:反应温度 t_1 ^{\mathbb{C}},以溴代烷为基相,滴加吗啉。

同时 n 烷基吗啉对 NaCl 的选择性稍差。

(3)烷基吗啉类 NaCl 浮选剂烷基的最佳碳原子数为m。

参考文献:

- [1] Winzer Manfred, Koehler Helmut, Koehler Ruth, Flotation of sodium chloride [P]. German (east.) patent; 62284.
- [2] moerdtedt Dieter, Winzer Manfred, Koehler Ruth, Pueschel

- Fritz · flotation of sodium chloride from salt mixtures [P] · German (east) patent : 64443 ·
- [3] Milder Siegfried, Winzer Manfred, Koehler Ruth, Purification of magnesium sulfate by flotation with 4—alkylmorpholines [P]. German(east) patent; 68226.
- [4] 华东理工大学·一种十二烷基吗啉的制备方法[P]·中国 专利:1312247A.
- [5] 徐勇·QHS⁻²型氯化钠浮选药剂浮选性能试验[J].海湖 盐与化工,2002.31(6):1-3.

Study on the Best Synthetical Conditions for Sodium Chloride Flotation Reagent

WANG Ai-li, LI Hai-min, ZHANG Quan-you, MENG Rui-ying, YANG Hai-yun (Qinghai Institude of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China)

Abstract: This article discussed the synthetical conditions of two N—alkylmorpholine flotation reagents of sodium chloride with best flotation characteristics. The result were presented.

Key words: N-Alkylmorpholine; Flotation; Sodium chloride flotation reagent