NaCl 型油田水中 I⁻的离子选择电极法测定

陈玉锋1,2,杜秀月1,冉广芬1

(1. 中国科学院青海盐湖研究所, 青海 西宁 810008; 2. 中国科学院研究生院, 北京 100039)

摘 要:采用了NaCl 溶液为离子强度调节剂(TISAB),离子选择电极法测定NaCl型油田水中 Γ 离子的含量,并对该方法进行了测定条件实验的研究。标准曲线在 $7.94 \times 10^{-6} \sim 1.00$ mol/L范围内呈良好的线形关系,相关系数 $R^2 = 0.9995$,平均回收率为98.9%,RSD(n=6)=1.0%,实验结果表明,该方法测定NaCl型油田水中的 Γ 简便、快速、准确。

关键词: 碘离子: 油田水: 离子选择电极法

中图分类号: 0657.1

文献标识码: A

文章编号: 1008-858X(2007) 02-0030-04

0 引言

碘的测定方法较多,常量碘的测定有银量 法、硫代硫酸钠法[1], 微量碘的测定大多都采用 分光光度法、砷一铈接触催化法[1]、硫氰化铁比 色法^{2]}、碘一碘化钾一结晶紫多元络合物水相 显色比色法^[3]、安培检测一离子色谱法^[4]。 盐 湖卤水中碘的分析方法常采用硫酸铈一亚砷酸 盐氧化还原催化法测定,该方法测定范围较窄 $I^{-}(0 \sim 0.1 \,\mu_{\rm g/mL})$, 条件严格, 操作烦琐。苏景 富等人[3] 采用离子选择电极法测定了 NaHCO3 型水体中的碘,本文在其研究的基础上,采用 NaCl 溶液为离子强度调节剂(TISAB), 很好地 解决了 NaCl 型油田水中 NaCl 浓度较大影响测 定的问题。离子选择电极法测定碘,设备要求 简单、测定范围宽、操作方便、快捷。该方法标 准曲线在7.94×10⁻⁶~1.00 mol/L范围内呈良 好的线形关系, 相关系数 $R^2 = 0.9993$, 平均回 收率为98.86%, RSD(n=6) = 1.04%。

1 实验部分

1.1 试剂与仪器

KI 标准溶液: 准确称取 $100 \sim 105$ [©]烘至恒重的 KI(GR) 0. 130 8 g加入少量去离子水溶解,转入1 000 mL容量瓶中, 用水定容摇匀, 此溶液含 I^- 100 P_g/mL , 1 mol/L KI 溶液配制方法同上; 离子强度调节剂(TISAB): 准确称取23. 4 g N $_2$ CI(GR) 溶于去离子水中, 定容至200 mL。仪器为 $_2$ DI—1 型碘离子选择电极(上海雷磁仪器厂); 217 型双盐桥(内盐桥饱和 KCI 溶液, 外盐桥充入0.1 mol/L NaCl 溶液(TISAB) 参比电极(上海雷磁仪器厂); ORION RESEARCH MICROPROCESSOR IONALYZER/901 型离子计(美国); pH—3 型酸度剂(上海第二分析仪器厂)。

1.2 实验方法

移取碘含量在 $50 \sim 250~\mu_{\rm g}$ 之间的待测液于 $100~\rm mL$ 容量瓶中,加入 $2~\rm mL$ 离子强度调节剂 (TISAB),用去离子水定容,摇匀。转移至 $100~\rm mL$ 烧杯中,可以组成如下电池: Γ ISE/待测溶液/SCE, 在室温磁力搅拌下(一般 $3 \sim 7$ 分钟)读取稳定电位值。测定前将 pI-1 型碘离子选择电极在 $1.97 \times 10^{-6}~\rm mol/LKI$ 溶液中浸

收稿日期: 2006-08-15; 修回日期: 2007-03-21

作者简介: 陈玉锋(1980-), 男, 中国科学院青海盐湖研究所分析化学专业硕士研究生.

泡2小时左右,以活化碘电极,然后用去离子水把电极电位洗至+80 mv左右,测定时按浓度由低到高测量,每次测量前后均要用去离子水把电极冲洗三次,并用滤纸吸干上面的水。

2 结果和讨论

2.1 测量范围的选定[6-7]

在 100 mL 容量 瓶 中配制 $7.94 \times 10^{-6} \sim 1.00 \text{ mol/L范围内的标准 I}$ 溶液,方法同 1.2,结果见表 1.8 1.8

表 1 测量范围的选定

Table 1 The range of determination

lg[I ⁻]	- 5. 40	- 5 . 10	-4.93	-4. 80	-4. 71	-4 . 63	— 3. 30	-3. 00	-2 00	— 1. 00	0
电位— E/ mv	60. 2	74. 7	85. 5	91. 2	97. 5	101. 8	180. 7	202 3	264. 5	328 9	382 2

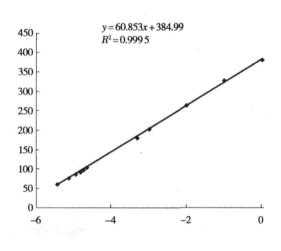


图1 测量范围的选定

Fig. 1 The range of determination

从表 1、图 1 可知, I 含量在7. 94× 10^{-6} ~ 1. 00×10^{-1} mol/L浓度范围内符合能斯特方程,响应曲线良好,其中相关系数 $R^2 = 0.999$ 5.

2.2 标准工作曲线的制作

取油田水原样液或稀释倍数较小的试样液,采用离子选择电极法测定 I^- 含量,试样中其它离子对测定干扰较大,当稀释倍数大约在 40 倍时,回收率在 94. 67% ~ 106. 00% 之间,故本文选择 I^- 含量在3. 94×10^{-6} ~ 2. 36×10^{-5} mol/L范围内测定,结果见表 2、图 2。

表 2 标准曲线的制作

Table 2 Rendering of the standard curve

lg[I ⁻]	- 5. 40	— 5 . 10	- 4 . 93	- 4 . 80	-4. 63
电位— E/ (mv)	56. 4	74 2	84. 5	91. 7	101. 7

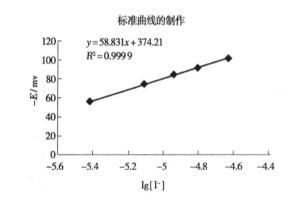


图 2 标准曲线

Fig. 2 The standard curve

从表 $2 \times 8 \times 2$ 可知, 采用离子选择电极法测定 Γ 具有较好线性关系。

2.3 pH 对测定 I⁻的影响

用 0.1 mol/L HNO_3 和0.1 mol/L NaOH 调节 pH 值, 按 2.2 实验方法分别测定不同 pH 下 $7.88 \times 10^{-6} \text{ mol/L}$ 的 I^- 标准溶液的电位值, 结果见表 3。

表 3 pH 对测定 I 的影响

Table 3 Effect of pH on determination of I

pН	2 11	3. 03	4. 07	5. 97	6.89	9. 02	9. 41	9. 59	9. 69	10. 30
-E/mv	80. 8	74. 4	70. 9	74. 6	74. 5	74. 1	74. 6	74. 6	74. 1	73. 4
回收率%	139 6	109. 2	95. 5	_110_1	109. 6	108.0	110.1	110.1	108. 0	105. 1
(() 994=/11/11	T nma /	Cademic	TOTTEN	FIRCTOR	TIC PITHITS	nmo Ho	IIISE ATT	TIONIS TO	served	niin'//w

(C) 1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.c

32

从表 3 可知, 当 pH 在 3.00 ~ 10.30 范围内, 回收率基本稳定, 当 pH < 3 时, 氢离子响应影响 Γ 的电位, 使电位增大; 当 pH > 10.30 时, 溶液中的 OH^- 与 Ca^{2+} 、 Mg^{2+} 等金属离子生成

沉淀.干扰测定。

2.4 精密度实验

分别取同一样品 6 个, 测定方法同 2 2, 结果见表 4。

表 4 精密度实验结果

Table 4 Results of precision test

油田水编号	1	2	3	4	5	6		
— E/ mv	68. 9	69. 2	69. 5	69. 4	68 9	69. 4		
I ⁻ 含量/ (mg/L)	36. 70	37. 14	37. 58	37. 43	36.70	37. 43		
I 平均含量/(mg/L)	37. 16±0. 39							
RSD/ %			1. 0					

从表 4 可知, 标准偏差 RSD(n=6) = 1.0%,表明采用此方法测定 NaCl 型油田水中 Γ 结果较稳定, 精密度较高。

2.5 加标回收率实验

取一定的试样液, 向试样液中加入一定的 I^- 标准溶液, 方法同 2. 2. 结果见表 5.

表 5 加标回收率实验

Table 5 Results of standard recovery test

I ⁻ 含量/μg	I 加入量/#g	I 测得量/µg	回收率/ %	平均回收率/ %
95	50	146	102 0	
95	100	193	98. 0	
95	150	238	95. 3	
98	50	151	106 0	98. 9
98	100	197	99. 0	
97	100	194	97. 0	
97	150	239	94. 7	

由表 5 可知, 采用离子选择电极法测定 NaCl 型油田水中的 I^- , 平均回收率为 98.9%。

2.6 共存离子的干扰

NaCl 型油田水中一般都含有 K^+ 、 Na^+ 、 Ca^{2+} 、 Mg^{2+} 、 Cl^- 、 Br^- 、 SO_4^{2-} 等离子。以相对误差在 10%以内允许的共存离子浓度分别见表 6。

表 6 共存离子的干扰

Table 6 Interference of coexistent ions

干扰离子	K^+	${\rm Mg}^{2+}$	Ca^{2+}	Br^-	SO ₄ ²⁻
允许浓度/ (mol/ L)	0.2	0.05	0. 002	0.005	0. 01

通过向标准溶液中加入与待测液中等量的 NaCl 以消除 Na^+ 、 Cl^- 的干扰。另外 S^2^- 对离子选择电极法测定 I^- 的干扰比较严重,试样中如含有微量 S^{2-} ,可通过采取加入适量的 Pb^{2+} 使 S^{2-} 生成 PbS 沉淀,过滤除去。

2.7 与其它测定方法的比较

本方法与 $NaNO_2$ 分光光度法 81 、砷一铈接 触催化法、测定结果比较见表 7 。

由表 7 可知, 该方法与 NaNO₂ 法测定结果 比较一致, 由于砷一铈接触催化法测定范围较 窄, 稀释倍数较大, 测定该试样时引起的误差较 大。

表 7 测定结果的比较

Table 7 Comparison of the experimental results with different methods

方法编号	本法	NaNO ₂ 分光光度法	砷一铈接触催化法
	37. 16±0. 39	37. $60\pm0~04$	27. 64±6 40

3 结 论

以 NaCl 为总离子强度调节缓冲液,离子选择电极法测定 NaCl 型油田水中的 I^- ,标准曲线在7. $94\times10^{-6}\sim1$. 00~mol/L范围内呈良好的线性关系,相关系数 $R^2=0.999~5$,平均回收率为98. 9%,RSD(n=6) = 1. 0%,测定结果较为准确、可靠,而且该方法设备要求简单,操作方便、快速。

参考文献:

[1] 中国科学院青海盐湖研究所分析室. 卤水和盐的分析方

法[M]. 北京: 科学出版社, 1993. 66.

- [2] 池建新. 生活饮用水微量碘的测定—硫氰化铁比色法 [J]. 中国地方医学杂志, 1990, 9(4): 234— 235.
- [3] 周坚勇. 碘一碘化钾一结晶紫多元络合物水相显色的研究及碘盐中碘的测定[J]. 光谱仪器与分析, 1991(1): 22 —23.
- [4] 柴成文,等. 安培检测一离子色谱法测定乳品中的微量碘[J]. 色谱, 2001, 19(1): 94-96.
- [5] 苏景富, 等. 离子选择电极法测定油田水中碘[J]. 油田化学, 1995, 12(3)278—280.
- [6] 黄德培, 等. 离子选择电极的原理和应用[M]. 新时代出版社. 1982. 341.
- [7] 中南矿冶学院分析化学教研室. 化学分析手册[M]. 北京:科学出版社. 1982. 549.
- [8] 陈玉锋, 等. 吸光光度法测定 卤水、油田水中 微量碘的 研究[J]. 盐湖研究, 2006, 14(2): 42-45.

Determination of I in NaCl-riched oilfield water by Ion Selective Electrode Method

CHEN Yu-feng^{1, 2}, DU Xiu-yue¹, RAN Guang-fen¹

- (1. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China;
 - 2. Graduate school of Chinese Academy of Sciences, Beijing, 100039, China)

Abstract: In this paper, the ion selective electrode method was applied for determining I^- in NaCl-riched oil-field water with recommendation. A good linearity of the standard curve was observed in the range from 7.49×10^{-6} mol/L to 1.00 mol/L with correction coefficient of 0.9995. The mean recovery of the method is 98.8% with the RSD of 1.0% (n=6). The method is proven to be simple, rapid and exact for determination of I^- in oilfield water.

Key words: Iodide ion; Oilfield water; Ion selective electrode method