大柴旦湖底低品位硼矿制取硼砂新工艺研究

董亚萍,边绍菊,冯海涛,高丹丹,郑竹林

(中国科学院青海盐湖研究所,青海 西宁 810008)

摘 要:据大柴旦湖底低品位硼矿组成特点,设计二次加分解剂、二次过滤制取硼砂工艺,具有硼矿分解率 高、副反应少、硼总收率高的特点。

关键词:分解剂;副反应;硼矿;收率;大柴旦湖

中图分类号:TD97 文献标识码:A

文章编号:1008-858X(2015)02-0058-06

1 引 言

根据地质资料,大柴旦湖底硼矿储量按 B₂O₃计达 406.0 × 10⁴ t^[1], 属特大型硼矿床。 早年随意开采部分固体硼矿,使大柴旦硼矿资 源受到破坏,但尚不严重,目前该硼矿储量仍有 300×10^4 t 以上,具有发展硼砂、硼酸生产的资 源优势。由于湖底硼矿品位低,硼矿种类复杂, 杂质含量高,特别是含有大量的石膏,传统的生 产工艺技术硼收率低,生产成本高,产品质量 差,严重影响生产的正常进行^[2]。从近几年的 硼矿组成可知, B₂O₃ 平均含量为9%的硼矿, 石 膏含量在 30% 左右;采用传统工艺生产硼砂, 每100 kg硼矿中 B₂O₃ 消耗分解剂 6.85 kg,石 膏消耗分解剂 23.38 kg, 副反应消耗分解剂量 是主反应消耗量的3倍多。由此可见,用大柴 旦湖底低品位硼矿生产硼砂的关键是寻找有效 的分解剂,减少副反应^[3]。

在全面分析了大柴旦湖底硼矿的组成、混

合分解剂生产耗量后,设计了采用单一分解剂 分解硼矿、二次加分解剂、二次过滤的新工艺方 案。采用此工艺生产硼砂可降低分解剂的消耗 量,降低成本,提高产品的市场竞争力,增加企 业经济效益。

利用新设计的工艺方案,在降低分解剂用 量的条件下,使硼转为多硼酸盐进入溶液,抑制 了硼矿中石膏等伴生杂质的副反应,且多硼酸 盐在溶液中的溶解度较硼砂要大得多,这对提 高分解液浓度,保证在过滤过程中没有硼析出, 减少硼的损失是十分有益的。

2 试验原料、试验设备

2.1 试验原料及试验设备

所有试验原料均取自大柴旦湖底硼矿堆, 硼矿原料经过粉碎、研磨,并通过20目标准筛, 混合均匀后备用。原料组成见表1。

T	able 1 Chemica	l composition of th	he borate minerals	s in the lakebed o	of Da Qaidam salt	lake					
组成	B_2O_3	CaO	MgO	Cl -	SO_4^2 -	不溶物					
项目	1%	1%	1%	1%	1%	1%					
水 溶	5.20	4.41	1.24	7.37	4.86	45.44					
酸溶	8.72	12.54	2.73		20.62	5.93					

表1 大柴旦湖底硼矿组成

收稿日期:2014-10-14;修回日期:2015-01-27

资助项目:青海省科技支撑计划项目(2013-G-138A);中国科学院青海盐湖研究所青年引导基金"利用大柴旦盐湖卤水高 效获得多种盐田矿物的研究,K-Ca-NH₄-Cl-H₂O体系硼酸结晶介稳性质研究"资助

作者简介:董亚萍(1964 -), 女, 研究员, 主要从事盐湖矿产资源开发研究。

分解剂 A,市售产品;分解剂 B,市售产品。 高压反应釜,CST-2。

2.2 分析方法

B₂O₃,甘露醇法,氯化钡甘露醇法^[4-5]; SO₄²⁻,盐酸联苯胺容量法; Cl⁻,汞量法; Mg²⁺、Ca²⁺,EDTA 容量法; 水不溶物,重量法。

- 3 试验方案
- 3.1 正交试验

大柴旦湖底硼矿制取硼砂工艺流程见

图 1。采用多因次配比试验方法,选择分解剂 加入量(以硼矿分解所需理论分解剂量为基 础)、液固比(体积质量比)、分解压力和分解时 间等 4 因素 3 位级;因素位级表见表 2;按 L₉(3⁴)正交表进行的正交试验,结果见表 3、表 4 和表 5。

表2 正交试验因素位级表 **Table**2 The orthogonal factors table

		0		
因素	液固比	分解剂用量	分解压力	分解时间
	Α	В	С	D
位级	$/(mL^{:}g)$	/% /	$(\text{kg} \cdot \text{cm}^{-2})$	/h
1	2:1	90	2~3	1
2	1.5:1	70	3~4	1.5
3	1:1	50	4~5	2

Fig. 1 Process flow diagram for the producing of borax from boron minerals in the lakebed of Dachaidam

3.2 结果讨论

通过对表3结果的计算分析,所选4因素

对硼矿分解率的影响中液固比(A)以位级1为 优;分解剂用量(B)以位级1为优;分解压力 (C)以位级2为优;分解时间(D)以位级3为 优。从极差 R 值看,影响分解率的因素主要顺 序为 B > C > A > D,4 个因素之间的 R 值相差 不大;综合考虑,选择硼矿分解的最优惠条件是 $A_1 \times B_1 \times C_2 \times D_3$ 。

由表3数据可知,在同一分解剂用量的条件下,硼矿分解率的大小与配料时的液固比有关。从表4数据可知,降低液固比,可以提高分解液中B₂O₃浓度,但相应洗水中B₂O₃浓度也提高,最高时达24.9 g/L。由表5数据可知,

B₂O₃收率的高低反映硼矿分解率的高低,SO₄²⁻ 收率的高低则反映分解过程中石膏参与反应的 程度。当溶液中 SO₄²⁻的收率 < 100% 时,说明 硼矿分解时没有副反应发生,若 SO₄²⁻ 收率 >100%,则说明硼矿分解时矿中石膏参与反 应,有副反应发生;溶液中 SO₄²⁻ 收率一般均 <100%,而且分解剂用量越少,SO₄²⁻ 收率越 低,因而减少分解剂的用量可以有效避免副反 应的发生。

				· ·		
编号	液固比 A	分解剂用量 B	分解压力 C	分解时间 D	分解率/%	Na_2O/B_2O_3
1 – 1	1	1	3	2	92.89	0.17
1 - 2	2	1	1	1	85.34	0.21
1 – 3	3	1	2	3	91.82	0.23
1 - 4	1	2	2	1	92.84	0.23
1 – 5	2	2	3	3	90.64	0.20
1 - 6	3	2	1	2	86.47	0.23
1 – 7	1	3	1	3	83.60	0.21
1 - 8	2	3	2	2	86.43	0.23
1 – 9	3	3	3	1	78.90	0.23
Ι	89.72	90.02	85.14	85.68		
Ш	87.47	89.97	90.35	88.60		
Ш	85.73	87.98	87.48	88.69		
极差 R	4.04	7.04	5.21	3.01		

表 3 $L_9(3^4)$ 正交试验结果 Table 3 Results of the $L_9(3^4)$ orthogonal experiments

表4 正交试验分解液液相组成

Table 4	Composition	of the	decomposed	solution	in	the	orthogonal	experiment	IS

溶液组成 /(g・L ⁻¹)										
ρ	B_2O_3	CaO	MgO	Cl -	SO_4^2	游离碱				
1.0716	33.01	1.43	1.72	32.97	23.46	- 16.72				
1.0869	36.13	1.40	1.71	36.00	24.36	- 16.04				
1.1343	59.71	1.53	1.46	53.29	32.15	-24.47				
1.0646	32.19	1.37	2.09	27.48	29.96	-13.40				
1.0819	40.67	1.61	1.66	34.77	20.74	- 18.28				
1.1049	44.23	1.41	1.69	45.87	24.36	- 18.52				
1.0556	27.42	1.29	1.58	27.59	12.31	- 12.22				
1.0741	34.48	1.66	1.96	35.45	14.85	- 14.02				
1.0850	39.08	1.53	1.58	41.59	15.17	- 16.00				
	 ρ 1.0716 1.0869 1.1343 1.0646 1.0819 1.1049 1.0556 1.0741 1.0850 	$\begin{array}{c cccc} \rho & B_2O_3 \\ \hline \\ \hline P & B_2O_3 \\ \hline \\ 1.0716 & 33.01 \\ \hline \\ 1.0869 & 36.13 \\ \hline \\ 1.1343 & 59.71 \\ \hline \\ 1.0646 & 32.19 \\ \hline \\ 1.0819 & 40.67 \\ \hline \\ 1.1049 & 44.23 \\ \hline \\ 1.0556 & 27.42 \\ \hline \\ 1.0741 & 34.48 \\ \hline \\ 1.0850 & 39.08 \\ \hline \end{array}$	ρ B_2O_3 CaO 1.071633.011.431.086936.131.401.134359.711.531.064632.191.371.081940.671.611.104944.231.411.055627.421.291.074134.481.661.085039.081.53	溶液组成/(g ρ B_2O_3 CaOMgO1.071633.011.431.721.086936.131.401.711.134359.711.531.461.064632.191.372.091.081940.671.611.661.104944.231.411.691.055627.421.291.581.074134.481.661.961.085039.081.531.58	ρ B_2O_3 CaOMgOCl ⁻¹ 1.071633.011.431.7232.971.086936.131.401.7136.001.134359.711.531.4653.291.064632.191.372.0927.481.081940.671.611.6634.771.104944.231.411.6945.871.055627.421.291.5827.591.074134.481.661.9635.451.085039.081.531.5841.59	ρ B_2O_3 CaOMgOCl $^ SO_4^{2^-}$ 1.071633.011.431.7232.9723.461.086936.131.401.7136.0024.361.134359.711.531.4653.2932.151.064632.191.372.0927.4829.961.081940.671.611.6634.7720.741.104944.231.411.6945.8724.361.055627.421.291.5827.5912.311.074134.481.661.9635.4514.851.085039.081.531.5841.5915.17				

Table 5 B_2O_3 content in the decomposed solution and residue										
编号一		溶液收率/%		渣中 B	分解率					
	B_2O_3	Cl -	SO_4^2	水溶	酸溶	/%				
1 – 1	82.91	98.67	112.55	0.95	1.75	92.89				
1 – 2	71.15	86.57	93.37	1.14	3.47	85.34				
1 – 3	78.32	85.81	82.88	1.72	2.98	91.82				
1 - 4	79.96	82.98	101.65	1.15	2.33	92.81				
1 – 5	78.20	82.71	79.88	1.01	2.54	90.64				
1 - 6	65.65	82.69	71.19	2.13	4.12	86.47				
1 – 7	66.73	82.12	61.15	1.83	4.34	83.60				
1 - 8	87.31	84.07	57.81	2.08	4.26	86.43				
1 – 9	60.35	78.80	46.71	1.84	5.08	78.90				

表5 分解液及渣中 B₂O₃等的含量

注:溶液收率指分解液和洗水中的 B_2O_3 、 Cl^- 、 SO_4^- 的总量与硼矿中 B_2O_3 量、水溶性 Cl^- 和 SO_4^- 比例

4 全流程分解工艺试验

4.1 试验方案

在正交试验的基础上,进行全流程循环试 验,全流程实验条件见表6。

表6 全流程实验条件

Table 6con	ditions for	the	complete	flow	experiments
------------	-------------	-----	----------	------	-------------

编	分解剂用量	液固比	分解压力	分解时间
号	1%	L: S	$/\text{kg} \cdot \text{cm}^{-2}$	/h
Ι	60	1.5 : 1	2.5 - 3.0	1.5
Ι	60	2 : 1	2.5 - 3.0	1.5
П	50	2 : 1	2.5 - 3.0	1.5

4.2 试验结果

依据分解液中 B₂O₃含量加入适量的分解

剂 B,保持分解温度不低于 80 ℃,反应时间控 制在30~60 min 之间,热过滤,滤渣经洗涤后 弃去,滤液冷却结晶,分离得到产品硼砂;硼砂 用饱和硼砂溶液洗涤、干燥称重。母液在取样 分析后留待下次配料;待全部试验结束后,将所 得硼砂混合均匀后取样分析主含量及组成。全 流程试验结果见表7、表8、表9、表10。在表7 给出了固体硼矿的分解率;表8中列出了B₂O₃ 在分解液、洗渣水和母液中的浓度以及在液相 中 B_2O_3 、 Cl^- 、 SO_4^{2-} 的收率;在表9中给出了分 解液冷却结晶得到硼砂产品的收率和硼砂的结 晶率。硼砂结晶率是指结晶得到的硼砂量占分 解液中硼砂总量的质量百分比;总收率是指得 到的产品硼砂中的硼占原料矿和分解配料液中 总硼的质量百分比,该数值没有考虑母液中的 硼含量。

伯日	迹田山 -			分	解液组成/	%			干 渣	分解率
编	液固比 -	g	d	B_2O_3	CaO	MgO	Cl -	SO_4^{2}	/g	/%
2 – 1	1.5:1	697	1.078	34.98	1.26	1.71	36.55	17.20	294	85.72
2 – 2	1.5:1	645	1.129	43.30	1.02	1.49	63.78	32.22	324	83.55
2 – 3	2:1	861	1.156	48.51	1.27	1.09	81.14	37.54	312	88.02
2 - 4	2:1	1086	1.148	45.37	1.50	1.06	90.20	52.78	316	92.54
2 – 5	2:1	990	1.150	39.76	1.16	1.09	95.58	28.90	334	88.74
3 – 1	2:1	1079	1.158	40.75	1.23	1.19	102.70	26.76	335	80.85
3 – 2	2:1	1008	1.154	40.92	1.05	1.13	97.77	29.58	326	87.32
3 – 3	2:1	1072	1.148	40.09	1.05	1.33	86.40	34.81	323	85.06
3 - 4	2:1	1079	1.148	41.41	1.44	1.43	80.26	38.00	304	85.12

表7 全流程试验结果 Table 7 Results of the complete flow experiments

盐湖研究

	Table 8Distrubution of B_2O_3 in different liquid phase during the complete flow experiment												
疟早	分解液/	$(\mathbf{g} \cdot \mathbf{L}^{-1})$	洗水/(§	$g \cdot L^{-1}$)	母液/(母液/(g·L ⁻¹)		收率/%					
骊亏 -	d	B_2O_3	d	B_2O_3	d	B_2O_3	B_2O_3	Cl -	SO_4^2				
2 – 1	1.078	34.98	1.050	20.72	1.092	12.21	70.09	88.55	68.66				
2 – 2	1.129	43.30	1.079	26.07	1.142	10.56	55.43	84.21	69.84				
2 – 3	1.156	48.51	1.092	25.01	1.172	12.70	72.94	90.80	72.55				
2 - 4	1.148	45.37	1.110	20.29	1.170	14.35	79.89	90.04	105.8				
2 – 5	1.150	39.76	1.118	22.70	1.172	14.19	62.87	85.37	61.89				
3 – 1	1.158	40.75	1.083	14.45	1.185	11.55	64.86	80.95	34.65				
3 – 2	1.154	40.92	1.092	16.43	1.177	11.48	76.90	90.88	76.26				
3 – 3	1.148	40.09	1.073	14.68	1.168	12.78	73.62	92.54	63.34				
3 - 4	1.148	41.41	1.061	13.69	1.168	10.89	76.06	63.62	62.59				

表8 全流程试验液相 B₂O₃分布结果

表9 全流程主要技术指标

Table 9	Main	technology	parameters	of th	he com	plete	flow	experiments
---------	------	------------	------------	-------	--------	-------	------	-------------

					^	-	
伯旦	分解液	洗液	母液	析出硼	砂量/g	结晶率	总收率
5冊 5	/ g	/ g	/ g	湿硼砂	干硼砂	/%	/%
2 – 1	658	463	568	41.0	35.6	60.86	28.68
2 - 2	598	497	520	51.0	46.0	73.25	37.06
2 - 3	825	478	704	79.0	70.0	73.79	56.40
2 - 4	1040	511	889	94.0	81.0	71.93	65.26
2 - 5	951	489	850	64.0	58.0	64.38	46.73
3 – 1	1040	593	828	81.0	75.0	74.70	62.78
3 - 2	972	720	846	79.0	75.0	79.43	62.78
3 - 3	1047	674	915	85.0	75.0	74.93	62.78
3 - 4	1053	627	881	88.0	77.0	73.98	62.05

表10 硼砂产品分析结果

Table 10	Chemical	compositon	of the	resulting	borax	production
				· · · · · · · · · · · · · · · · · · ·		F

	$Na_2B_4O_7 \cdot 10H_2O$	$\mathrm{Na}_2\mathrm{SO}_4$	NaCl	Na ₂ CO ₃
平均含量/%	100.20		0.10	0.31

4.3 结果讨论

表7数据表明,因第1个循环试验用清水 配料,硼矿分解率达到85.72%,然而滤液中 B₂O₃浓度较稀,溶液中其它盐类含量偏低,硼 砂结晶率较低,总硼收率也低。随着循环次数 的增加,硼砂结晶率增大,硼的总收率也由 29.80%增加到64.45%。表中数据同时还反 映出硼矿分解时,分解剂用量由60%降到50% 时,硼矿分解率略有下降,由87.5%降到 84.6%,分解剂用量减少10%,硼矿分解率降 低不足3%,硼砂的结晶率和硼总收率不仅没 有下降,反而略有增加。说明降低分解剂A用 量,硼矿分解率变化不明显,硼总收率受分解剂 用量的影响很小。硼矿分解率基本上不受循环 次数的影响,随着循环次数的增加,硼矿分解 率、硼砂结晶率及总硼收率基本上趋于平行。

分析表 8 数据得知,分解液中 B₂O₃浓度达 到41 g/L,最高时达48.5 g/L;除清水配料外其 余均在 40 g/L 以上;SO₄²⁻和 Cl⁻的浓度随循环 次数的增加积累不明显,基本上保持平衡,且达 到一定浓度后开始下降。说明在上述分解条件 下,以洗渣水和 50% 母液配料,不会造成分解 液中 SO₄²⁻和 Cl⁻的积累。溶液中 SO₄²⁻和 Cl⁻ 的收率是指溶液中 SO₄²⁻和 Cl⁻的量占所加配 料液、原料中水溶性 SO₄²⁻和 Cl⁻的总量的百分 数,这个数值若超过100%,说明硼矿在分解过 程中除水溶性的 SO_4^{2-} 和 Cl^- 全部进入溶液外, 还有部分非水溶性的 SO4- 和 Cl-参与反应,由 固相进入液相中:否则,说明在分解过程中没有 副反应发生。表8中的数据恰好说明在此条件 下,SO²⁻参与的副反应基本上得到了抑制,所 加入的分解剂全部用于硼矿的分解。在这种分 解条件下,用全部洗渣水和50% 母液配料,不 会造成原液中 SO_4^2 和 Cl^- 的大量积累,从而影 响产品质量,降低硼收率。几次循环所得母液 中 B₂O₃的平均含量为 12 g/L, SO₄²⁻和 Cl⁻则在 浓度达到一定值后开始下降,母液中还含有约 11 g/L的游离碱,说明二次所加分解剂 B 量足 够使多硼酸盐转为硼砂自溶液中析出。表 10 硼砂产品质量分析数据说明,用此工艺路线制 得的硼砂产品质量符合国家标准。

本工艺制备硼砂,料浆经过滤后不能直接 冷却结晶硼砂,而必须经过二次加分解剂二次 过滤后的滤液再冷却结晶,这是因为在60% ~ 50%的分解剂A的作用下,硼矿转为多硼酸盐 进入溶液,在相同的温度下,多硼酸盐在水中的 溶解度要较硼砂大的多,因而直接冷却析不出 产品,即使有结晶物,数量要少得多。二次加分 解剂B的目的是使多硼转为四硼,因分解液中 含有部分水溶性的钙、镁及铝盐,二次加分解剂 会使这些盐以沉淀的形式自溶液中析出,因此 必须二次过滤,才能保证结晶析出的硼砂质量 合格。分解剂B的用量和硼矿的分解率无关, 只和分解液中B₂O₃的浓度有关。

分析二次滤渣得知,渣中 B₂O₃ 含量达 14.83%,其中水溶性的 B₂O₃含量达 13.77%, 二次滤渣经过洗涤可有效减少硼的损失,提高 总硼收率。

5 结 论

由上述试验数据及讨论可以得出如下结 论。

1)大柴旦湖底硼矿因含有大量石膏,造成 用传统碱解工艺和混合分解剂分解新工艺分解 时,分解剂消耗量大大超过理论耗碱量,生产成 本高,产品没有市场竞争力,改用我们研究的单 一分解剂 A 分解时,可以完全避免副反应的发 生,降低分解剂的用量。

2)改用分解剂 A 分解硼矿分解剂用量可 以降到理论用量的 50%,硼矿分解率仍在 83% 以上。

3)改用二次加分解剂二次过滤工艺,增加 一次过滤,在生产中增加了一道工序,却可使硼 砂母液返回 50% ~60%,从而提高硼收率,降 低生产成本。

4)新工艺制得的产品硼砂质量完全符合 国家标准。

参考文献:

- [1] 青海省矿业协会.青海省矿业概况[M].西宁:青海人 民出版社,1998.
- [2] 于小伟.柴达木硼资源的开发现状及前景[J].柴达木开 发研究,2001(1):27-29.
- [3] 陶印连,郑学家. 硼化合物的生产与应用[M]. 成都:成都科技大学出版社,1992.
- [4] 中国科学院青海盐湖研究所.卤水与盐的分析方法[M].第2版.北京:科学出版社,1988.
- [5] 尹明,李家熙. 岩石矿物分析・第一分册[M]. 第3版.
 北京:地质出版社,1991.

Preparation of Borax from Boron Mineral Resources in the Lakebed of Da Qaidam Salt Lake

DONG Ya-ping, BIAN Shao-ju, FENG Hai-tao, GAO Dan-dan, ZHENG Zhu-lin (*Qinghai Institute of Salt Lakes*, *Chinese Academy of Sciences*, *Xining*, 810008, *China*)

Abstract: According to the constituting character of boron deposit in the lakebed of Da Qaidam salt lake, experiments for producing borax by adding decomposing reagent twice and filtrating twice have been designed. High decomposing rate, few side reactions and high gross rate of boron have been obtained. Key words: Decomposer; Side reaction; Boron mineral; Yield; Da Qaidam salt lake