DOI:10.12119/j. yhyj. 201802009

# 湘澧盐矿卤水 50 ℃等温蒸发析盐规律研究

颜 开1,蔡晓琳2,李瑞琴3,王春连3,廖 磊4,余小灿5

(1. 长江大学地球科学学院,湖北 武汉 430100; 2. 河北煤田地质局第二地质队,河北 邢台 054001;

3. 中国地质科学院矿产资源研究所,国土资源部成矿作用与资源评价重点实验室,

北京 100037;4.长江大学地球物理与石油资源学院,湖北 武汉 430100;

5. 中国地质大学(北京),北京 100083)

摘 要:湘澧盐矿区位于江陵凹陷南缘,该地区卤水中溴和钾的含量都达到了工业品位。对采集的湘澧盐矿卤水 样品进行了化学全分析,并对分析的结果进行了研究,查明了卤水中钾和溴等元素的富集机理;提出关于卤水综 合利用的工艺路线及可行性建议。等温蒸发实验表明,整个蒸发过程中均有石盐析出,失水量达到31.23%时,芒 硝开始析出;此后,石盐和芒硝共同析出。整个蒸发过程中该卤水的析盐规律为,首先析出氯化钠,再析出硫酸 钠,最后析出硫酸钾。

关键词:江陵凹陷;湘澧盐矿卤水;等温蒸发;析盐规律

中图分类号:TS392 文献标识码:A 文章编号:1008-858X(2018)02-0059-07

钾盐是我国紧缺的战略性资源,目前对外依 存度约为50%,中国钾盐主要从盐湖卤水中提 取,而已探明的盐湖钾盐储量有限<sup>[1-3]</sup>。截止 2001 年底全国查明钾盐资源储量达数亿吨,从矿 床类型看,90%以上来自液相矿床。液相矿床包 括盐湖晶间卤水及地下卤水<sup>[4-5]</sup>。江陵凹陷作为 我国深部地层蕴藏富钾卤水的盆地之一,其卤水 水化学类型为氯化物型,凹陷中南部的部分储层 卤水氯化钾资源量达2×10<sup>8</sup>t<sup>[6-7]</sup>。江陵凹陷有 丰富的陆相成矿物质来源,深层富钾卤水是由含 钾丰富的原始湖水蒸发浓缩形成的<sup>[8-9]</sup>。深层卤 水高盐度、高钾及富含多种微量元素,埋藏深,卤 水温度较高<sup>[10]</sup>。为了探明在盐湖沉积演化过程 中钾盐矿物的析出时段、成盐古卤水蒸发浓缩程 度以及古盐湖钾盐和各种微量元素的富集趋 势<sup>[11]</sup>,现以湘澧盐矿卤水为对象,研究江陵凹陷 深层富钾卤水的蒸发盐析规律。

经过多年的勘查,查明江陵凹陷盐湖卤水中 所含的氯化钠、氯化钾、溴等矿产资源均已达到工 业开采品位;并存在富含微量元素的卤水流体矿 床,矿化度高,所含的微量元素含量高,部分元素 为国家紧缺的矿产资源,例如锂、铷、铯等<sup>[12]</sup>。国 内外的众多学者对盐湖卤水的蒸发结晶及其富含 的微量元素进行过许多研究,如大柴旦盐湖夏季 卤水的天然蒸发<sup>[13]</sup>、小柴旦盐湖卤水25℃等温 蒸发<sup>[14]</sup>、硫酸钠亚型富锂卤水25℃等温蒸发计 算机模拟<sup>[15]</sup>,但有关于湘澧盐矿卤水蒸发析盐过 程的基础资料还比较缺乏。为充分利用当地优越 的自然资源,从卤水中分离提取出矿物资源,需要 对该地区卤水开展等温条件下的蒸发实验,总结 浓缩析盐规律,为下一步制定湘澧盐矿卤水综合 开发利用的工艺路线奠定基础。

#### 收稿日期:2017-05-10;修回日期:2017-08-25

基金项目:横向项目"湘澧盐矿卤水化学组成及析盐规律研究(E1201)";国家级整装勘查项目(湖北省荆州市江陵凹陷中南部深层 富钾卤水整装勘查);地质调查项目(湖北省荆州市江陵凹陷中南部深层富钾卤水整装勘查区专项填图与技术应用示范) 作者简介:颜 开(1992 - ),男,硕士研究生,主要研究方向为卤水矿床。Email;yankai\_ytq@ sina. com。 通信作者:蔡晓琳(1989 - ),女,工程师,主要研究方向为非金属矿产。Email;caixiaolin2008@ yeah. net。

# 1 实验部分

#### 1.1 实验原料

实验卤水分析结果如表1。

根据分析结果可知,卤水中 Na<sup>+</sup>、Cl<sup>-</sup>、SO<sub>4</sub><sup>2-</sup>、 K<sup>+</sup>相对于 Mg<sup>2+</sup>、Ca<sup>2+</sup>、Li<sup>+</sup>等其它元素的含量要 高得多。虽然其中溴离子(0.157 5 g/L)与钾离 子(0.398 1 g/L)的含量为同一数量级,但是通过 查阅资料发现,并没有成熟的 Na<sup>+</sup>, K<sup>+</sup>//Cl<sup>-</sup>, Br<sup>-</sup>, SO<sub>4</sub><sup>2-</sup> - H<sub>2</sub>O 五元体系相图,仅有部分人员做 该五元体系的相图研究,且没有得到普遍认可。 另外更没有查到 50 ℃的 Na<sup>+</sup>, K<sup>+</sup>//Cl<sup>-</sup>, Br<sup>-</sup>, SO<sub>4</sub><sup>2-</sup> - H<sub>2</sub>O 五元体系相图的相关资料,因此将体 系简化成 Na<sup>+</sup>、K<sup>+</sup>、Cl<sup>-</sup>、SO<sub>4</sub><sup>2-</sup> 四元体系。

Na<sup>+</sup>、K<sup>+</sup>、Cl<sup>-</sup>、SO<sub>4</sub><sup>2-</sup>四元体系介稳相图 (图1),共有5个相区,即Na<sub>2</sub>SO<sub>4</sub>、KCl、NaCl、 K<sub>2</sub>SO<sub>4</sub>和Na<sub>2</sub>SO<sub>4</sub>·3K<sub>2</sub>SO<sub>4</sub>。卤水原始组成点位于 该体系相图的NaCl和Na<sub>2</sub>SO<sub>4</sub>共饱线。

表1 湘澧盐矿卤水化学成分

| Table 1         The chemical compositions of brine in Xiangli salt mine |                                                                          |                                                      |                                                       |                                                       |                                                   |                                                    |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|--|--|--|
| 元 素                                                                     | $\mathrm{K}^{*}/(\mathrm{g}{\boldsymbol{\cdot}}\mathrm{L}^{-1})$         | Na <sup>+</sup> /(g·L <sup>-1</sup> )                | $Cl^{-}/(g \cdot L^{-1})$                             | $SO_4^{2-}/(g \cdot L^{-1})$                          | Br <sup>-</sup> / (g·L <sup>-1</sup> )            | $Mg^{2+}/(mg \cdot L^{-1})$                        |  |  |  |
| 含量                                                                      | 0.398 1                                                                  | 125.185                                              | 156.147 8                                             | 38.57                                                 | 0.157 5                                           | 0.487 9                                            |  |  |  |
| 元 素                                                                     | $\operatorname{Ca}^{2+}/(\operatorname{mg} \cdot \operatorname{L}^{-1})$ | $\mathrm{Sr}^{2+}/(\mathrm{mg}\cdot\mathrm{L}^{-1})$ | $\mathrm{Li}^{+}/(\mathrm{mg} \cdot \mathrm{L}^{-1})$ | $\mathrm{Rb}^{+}/(\mathrm{mg} \cdot \mathrm{L}^{-1})$ | $\mathrm{Cs}^+/(\mathrm{mg}\cdot\mathrm{L}^{-1})$ | $\text{HCO}_{3}^{-}/(\text{mg}\cdot\text{L}^{-1})$ |  |  |  |
| 含量                                                                      | 4.783 1                                                                  | 0.903 4                                              | 0.969 0                                               | 0.115 0                                               | 0.458 8                                           | 546.27                                             |  |  |  |



**图**1 Na<sup>+</sup>,K<sup>+</sup>,Cl<sup>-</sup>,SO<sub>4</sub><sup>2-</sup>四元相图及实验数据投点 **Fig.**1 Na<sup>+</sup>,K<sup>+</sup>,Cl<sup>-</sup>,SO<sub>4</sub><sup>2-</sup> phase diagrams and experimental data points

由于卤水是 NaCl 的饱和溶液,所以该卤水一 经蒸发就开始析出 NaCl;继续蒸发,芒硝开始析 出,体系组成点基本沿着 Na<sub>2</sub>SO<sub>4</sub>的固相点和卤水 起 始点连线的方向移动,且逐渐靠近Na<sub>2</sub>SO<sub>4</sub>.  $3K_2SO_4$ 相区, 析出的固相主要为 NaCl 和 Na<sub>2</sub>SO<sub>4</sub><sup>[16-17]</sup>。理论上, 蒸发终点应该是钾芒硝 + NaCl + KCl, 但是本实验蒸发终止点 L16 点并没 有出现 KCl。



图 2 实验数据投点局部放大 Fig. 2 The locally enlarged experimental data points

### 1.2 实验方法

实验用通风橱作蒸发室,加热板作热源,卤水 盛于圆柱状搪瓷桶中置于加热板上蒸发,水银接 触式温度计控制卤水蒸发温度(50±2℃),为避 免蒸发过程中局部卤水过热或过冷,故使用电动 搅拌器保证卤水受热均匀且转速保持 230 r/min。 实验过程中,每日定时采用真空抽滤方法将蒸发 后的卤水进行固液分离,得到液样和固样。得到 的固样用滤纸吸干,装袋密封编号,利用扫描电子 显微镜和 X 射线衍射分析该固样化学及矿物成 分。用比重瓶取所得液样 5 mL,称重,计算卤水 比重,然后将其转移至 100 mL 容量瓶中,用蒸馏 水稀释至刻度,该溶液用于化学分析。

## 1.3 分析方法

分析方法<sup>[18]</sup>如下: $K^+$ 、 $Li^+$ 、 $Rb^+$ 、 $Cs^+$ ,原子 吸收分光光度法; $Na^+$ ,差减法并辅以原子吸收分 光光度法; $Cl^-$ ,硝酸银容量法; $SO_4^{2-}$ ,硫酸钡重量 法; $B_2O_3$ ,甘露醇容量法; $CO_3^{2-}$ 、 $HCO_3^-$ ,酸碱滴定 法。

#### 1.4 实验数据

整个蒸发过程中共进行了16次固液分离,卤 水比重、蒸发失水量、继续蒸发卤水量和析出固样 量如表2。

| 序 号 | 比重/(g•mL <sup>-1</sup> ) | 蒸发失水量/% | 继续蒸发卤水量/g | 析出固样量/g |
|-----|--------------------------|---------|-----------|---------|
| 1   | 1.211 5                  | 31.23   | 11 410    | 2 381   |
| 2   | 1.256 9                  | 47.20   | 10 261    | 303     |
| 3   | 1.298 6                  | 52.54   | 9 154     | 356     |
| 4   | 1.311 9                  | 58.36   | 7 941     | 220     |
| 5   | 1.310 1                  | 64.30   | 6 676     | 316     |
| 6   | 1.316 1                  | 75.46   | 5 120     | 393     |
| 7   | 1.308 7                  | 79.18   | 3 661     | 409     |
| 8   | 1.314 8                  | 86.50   | 2 225     | 347     |

表 2 卤水蒸发数据 Table 2 The evaporation data in brine

| 62   |                          | 盆湖研究    |           |         |  |  |  |
|------|--------------------------|---------|-----------|---------|--|--|--|
| 续表2: |                          |         |           |         |  |  |  |
| 序号   | 比重/(g·mL <sup>-1</sup> ) | 蒸发失水量/% | 继续蒸发卤水量/g | 析出固样量/g |  |  |  |
| 9    | 1.311 3                  | 90.31   | 1 812     | 126     |  |  |  |
| 10   | 1.321 3                  | 91.94   |           |         |  |  |  |
| 11   | 1.318 6                  | 93.28   | 1 266     | 93      |  |  |  |
| 12   | 1.339 8                  | 94.82   |           |         |  |  |  |
| 13   | 1.340 3                  | 96.51   | 557       | 125     |  |  |  |
| 14   | 1.353 6                  | 98.29   |           |         |  |  |  |
| 15   | 1.362 0                  | 99.12   | 141       |         |  |  |  |
| 16   | 1.397 1                  | 99.51   |           |         |  |  |  |

LL MH TT -





Fig. 3 The relationship curve of mineral percentage and water loss in solid phase





蒸发实验液相和固相组成分析见表3和表4。

2 结果分析

#### 2.1 石盐析出规律

由图3和图4可知,在整个蒸发过程中,NaCl

始终处于饱和状态,只要卤水蒸发失去水分,石盐 就会析出,在 Na<sub>2</sub>SO<sub>4</sub>大量析出之前,固相成分主 要为 NaCl。

the ac

通过查阅资料发现,在含有 NaCl、NaBr 的任何体系中,它们二者会形成固溶体。即平衡固相不是纯的 NaCl 或纯的 NaBr,而是 NaCl 晶体中部分氯离子被溴离子取代了,形成二者比例不确定的固溶体;不是 NaCl 和 NaBr 简单的混合物,而是晶格中的离子被部分置换了。在体系研究中,该固相鉴定是一大难题,在本次研究中未进行该固溶体固相鉴定。

#### 2.2 芒硝析出规律

卤水中芒硝和其它组分处于不饱和状态,随 着卤水失水量的增大,卤水逐渐被浓缩,芒硝含量 逐渐升高。从图 3 和图 4 可知,蒸发前期芒硝处 于富集阶段,当失水量达到 31.23%时,芒硝开始 析出;当失水量为 64.3%时,固样矿物中芒硝的 含量达到第一次析出高峰,约为 30%;当失水量 为 90.31%时,固样矿物中芒硝的含量达到最大 析出量,约为 35%。

#### 2.3 钾、锂、镁的富集规律

钾、锂、镁的富集规律与失水量关系见图 5。 由图 5 可知,随着蒸发的进行,液相中钾的含量逐渐升高,至蒸发终止,钾由卤水中的 0.398 1 g/L 浓 缩到 51.556 8 g/L,浓缩了近 130 倍。锂、镁的含量 在整个蒸发过程中同样也得到了很高的富集。至 蒸发终止,锂的含量由卤水中的 0.969 0 mg/L 浓 缩到 221.954 2 mg/L,浓缩了近 230 倍,浓缩后母

| Autor 5 Exquite phase composition intolign isoliterinal evaporation of Alangh sait brine at 50 G |                              |          |           |           |                              |                 |                  |             |                 |
|--------------------------------------------------------------------------------------------------|------------------------------|----------|-----------|-----------|------------------------------|-----------------|------------------|-------------|-----------------|
| 液相                                                                                               | 液相化学组成/ (g・L <sup>-1</sup> ) |          |           |           | 液相化学组成/(mg・L <sup>-1</sup> ) |                 |                  |             |                 |
| 编号                                                                                               | Na <sup>+</sup>              | K *      | Cl -      | $SO_4^2$  | Br <sup>-</sup>              | Li <sup>+</sup> | Mg <sup>2+</sup> | ${ m Rb}^+$ | Cs <sup>+</sup> |
| L1                                                                                               | 147.1067                     | 0.4867   | 178.370 2 | 76.6399   | 0.337 5                      | 5.408 7         | 1.961 2          | 0.005 6     | 13.831 9        |
| L2                                                                                               | 157.009 9                    | 0.7674   | 186.851 2 | 67.1731   | 0.387 5                      | 8.0596          | 3.939 9          | 0.012 8     | 14.158 1        |
| L3                                                                                               | 162.278 1                    | 0.7017   | 181.6609  | 132.123 6 | 0.405 0                      | 8.9879          | 2.990 3          | 0.053 6     | 15.348 5        |
| L4                                                                                               | 159.162 6                    | 0.8379   | 173.010 4 | 66.020 6  | 0.450 0                      | 9.987 3         | 3.672 3          | 0.083 1     | 17.981 4        |
| L5                                                                                               | 149.931 0                    | 0.927 3  | 181.6609  | 62.8925   | 0.525 0                      | 11.085 7        | 4.382 5          | 0.1101      | 19.825 0        |
| L6                                                                                               | 154.747 1                    | 1.207 5  | 181.6609  | 67.9963   | 1.375 0                      | 14.5047         | 5.743 6          | 0.216 4     | 21.723 3        |
| L7                                                                                               | 147.948 1                    | 1.815 1  | 190.3114  | 65.279 8  | 1.750 0                      | 19.457 3        | 8.1024           | 0.6478      | 23.085 9        |
| L8                                                                                               | 152.066 6                    | 2.6437   | 190.3114  | 69.066 5  | 1.812 5                      | 30.286 8        | 11.330 0         | 1.318 2     | 26.394 0        |
| L9                                                                                               | 150.5395                     | 3.8897   | 190.3114  | 57.788 6  | 2.375 0                      | 35.796 5        | 14.414 1         | 1.682 5     | 27.1593         |
| L10                                                                                              | 153.441 1                    | 4.418 5  | 190.3114  | 71.289 1  | 2.750 0                      | 41.258 3        | 15.828 1         | 2.101 9     | 28.226 1        |
| L11                                                                                              | 152.425 4                    | 5.273 3  | 190.3114  | 60.505 2  | 3.281 3                      | 48.9398         | 18.409 6         | 2.747 6     | 30.272 8        |
| L12                                                                                              | 159.3683                     | 6.6664   | 190.3114  | 75.9814   | 3.750 0                      | 60.561 0        | 24.413 3         | 3.689 5     | 30.9117         |
| L13                                                                                              | 150.1887                     | 21.1970  | 193.771 6 | 64.3742   | 7.1875                       | 91.9299         | 40. 195 8        | 6.253 1     | 31.487 3        |
| L14                                                                                              | 145.6406                     | 29.6806  | 181.6609  | 72.359 3  | 7.500 0                      | 149.314 1       | 65.288 5         | 14.185 8    | 37.895 2        |
| L15                                                                                              | 146.124 9                    | 31.279 0 | 190.3114  | 68.325 6  | 10.312 5                     | 180.312 2       | 69.8409          | 20.921 2    | 38.118 9        |
| L16                                                                                              | 146.8766                     | 51.5568  | 193.771 6 | 85.448 2  | 18.125 0                     | 221.954 2       | 105.598 3        | 35.108 0    | 38.4597         |

表 3 湘澧盐矿卤水 50 ℃等温蒸发液相组成

Table 3 Liquid phase composition through isothermal evaporation of Xiangli salt brine at 50 °C

液中锂的含量超过工业开采品位 150 mg/L,可用 沉淀法提取碳酸锂产品。至蒸发终止,母液中镁 的浓度由卤水中的 0.487 9 mg/L 浓缩到 147.818 7 mg/L,浓缩了近 300 倍。

#### 2.4 溴、铷、铯的富集规律

溴、铷、铯的富集规律与失水量的关系如 图 6。由图 6 可知,溴、铷、铯在整个蒸发过程中 是一个富集的过程。至蒸发终止,溴的浓度由卤 水中的 0.157 5 g/L浓缩到 18.125 g/L,浓缩了近 115 倍。浓缩后母液中溴的浓度超过工业开采品 位300 mg/L,可用于提取溴的化工产品。至蒸发 终止,铷的浓度由卤水中的 0.115 0 mg/L浓缩至 35.108 0 mg/L,浓缩了近 305 倍。此时溶液中有 少部分 铷 进入氯化钾矿物中,这是由于铷 (0.149 nm)和钾(0.133 nm)的离子半径相近,铷 能以类质同像形式替代氯化物中的钾进入钾矿物 中<sup>[19]</sup>。浓缩后的母液可用于提取铷产品。至蒸 发终止, 铯的浓度由卤水中的 0.458 8 mg/L 浓缩 至 38.459 7 mg/L, 浓缩了近 80 倍。

# 3 结 论

1)根据 Na<sup>+</sup>、K<sup>+</sup>、Cl<sup>-</sup>、SO<sub>4</sub><sup>2-</sup>四元体系介稳相 图可知,卤水原始组成点位于该体系相图的 NaCl 和 Na<sub>2</sub>SO<sub>4</sub>共饱线。体系组成点基本沿着 Na<sub>2</sub>SO<sub>4</sub> 的固相点和卤水起始点连线的方向移动,且逐渐 靠近 Na<sub>2</sub>SO<sub>4</sub>·3K<sub>2</sub>SO<sub>4</sub>相区,析出的固相主要为 NaCl 和 Na<sub>2</sub>SO<sub>4</sub>。

2)在整个蒸发过程中, NaCl 始终处于饱和状态, 只要卤水蒸发失去水分石盐就会析出, 在 Na<sub>2</sub>SO<sub>4</sub>大量析出之前, 固相成分主要为 NaCl。 当卤水失水量达到 31.23% 时, Na<sub>2</sub>SO<sub>4</sub>开始析 出。当卤水失水量达到 99.12% 时, K<sub>2</sub>SO<sub>4</sub>开始 析出。

#### 盐湖研究

|          | Table 4         | Solid phase | e composition       | n through is   | othermal ev     | aporation o     | of Xiangli s     | alt brine at    | 50 °C           |              |
|----------|-----------------|-------------|---------------------|----------------|-----------------|-----------------|------------------|-----------------|-----------------|--------------|
| 田田       | 固相分析结果/%        |             |                     |                |                 |                 |                  |                 |                 |              |
| 回相<br>编号 | Na <sup>+</sup> | Cl -        | $\mathrm{SO}_4^{2}$ | K <sup>+</sup> | Li <sup>+</sup> | Br <sup>-</sup> | Mg <sup>2+</sup> | Rb <sup>+</sup> | Cs <sup>+</sup> | 固体矿物<br>组成   |
| S1       | 46.995 3        | 53.110 6    | 0.8208              | 0.026 1        | 0.000 2         | 0.012 5         | 0.002 5          | 0               | 0               | 石盐 芒硝        |
| S2       | 48.314 5        | 47.387 0    | 6.278 0             | 0.022 0        | 0.000 1         | 0.012 5         | 0.004 1          | 0               | 0               | 石盐 芒硝        |
| S3       | 46.702 0        | 40.5247     | 17.5800             | 0.017 6        | 0.000 1         | 0.012 5         | 0.005 3          | 0               | 0               | 石盐 芒硝        |
| S4       | 46.106 5        | 40.010 1    | 15.605 5            | 0.012 7        | 0.000 0         | 0.012 5         | 0.005 3          | 0               | 0               | 石盐 芒硝        |
| S5       | 43.289 1        | 35.828 1    | 20.353 2            | 0.009 9        | 0.000 0         | 0.012 5         | 0.005 6          | 0               | 0               | 石盐 芒硝        |
| S6       | 47.742 5        | 49.442 5    | 8.331 6             | 0.018 7        | 0.000 1         | 0.012 5         | 0.004 5          | 0               | 0               | 石盐 芒硝        |
| S7       | 46.1054         | 42.797 0    | 14.106 8            | 0.001 6        | 0.000 0         | 0.012 5         | 0.005 3          | 0               | 0               | 石盐 芒硝        |
| S8       | 46.349 1        | 41.924 3    | 14.429 2            | 0.0207         | 0.000 2         | 0.012 5         | 0.003 7          | 0               | 0               | 石盐 芒硝        |
| S9       | 45.351 3        | 31.6037     | 29.724 3            | 0.010 5        | 0.000 0         | 0.024 9         | 0.004 9          | 0.000 1         | 0               | 石盐 芒硝        |
| S10      | 49.417 9        | 55.1663     | 1.926 0             | 0.002 0        | 0.000 0         | 0.024 9         | 0.003 7          | 0.000 1         | 0.000 1         | 石盐 芒硝        |
| S11      | 45.1977         | 38.429 2    | 20.498 2            | 0.029 3        | 0.000 2         | 0.080 8         | 0.004 8          | 0.000 1         | 0.000 1         | 石盐 芒硝        |
| S12      | 50.294 8        | 55.082 4    | 1.432 3             | 0.006 0        | 0.000 0         | 0.047 2         | 0.005 2          | 0.000 2         | 0.000 1         | 石盐 芒硝        |
| S13      | 45.7924         | 39.509 5    | 21.088 9            | 0.0964         | 0.000 8         | 0.0596          | 0.005 0          | 0.000 2         | 0.000 2         | 石盐 芒硝        |
| S14      | 46.761 3        | 46.941 0    | 11.203 9            | 0.209 2        | 0.001 8         | 0.208 6         | 0.001 4          | 0.000 4         | 0.000 5         | 石盐 芒硝        |
| S15      | 45.533 2        | 39.467 6    | 19.237 9            | 0.4627         | 0.004 4         | 0.1311          | 0.008 1          | 0.000 5         | 0.001 0         | 石盐 芒硝<br>钾芒硝 |
| S16      | 40.6658         | 43.773 6    | 11.8849             | 4.472 1        | 0.045 8         | 0.930 2         | 0.008 7          | 0.001 5         | 0.002 0         | 石盐 芒硝<br>钾芒硝 |
|          |                 |             |                     |                |                 |                 |                  |                 |                 |              |

表4 湘澧盐矿卤水 50 ℃等温蒸发固相组成





3)50 ℃等温蒸发过程中,该卤水的析盐规律为:氯化钠、硫酸钠、硫酸钾。

4) 卤水中的其它元素, 钾、锂、镁、溴、铷、铯



图 6 卤水蒸发过程中溴、铷、铯的富集规律 Fig. 6 The concentration of bromine, rubidium and cesium in the evaporation process of brine

在蒸发过程中均处于浓缩阶段,浓缩后的母液中, 钾、锂、镁、溴元素均接近或超过工业开采品位,有 利于化工产品的开发利用。

#### 参考文献:

- [1] 邢万里,陈其慎.中国钾资源安全分析[J].中国矿业, 2013,22(12):11-14.
- [2] 刘成林,宣之强,曹养同等.探索中国陆块找钾[J].化工矿 产地质,2015,37(37):193-197.
- [3] 王春连,刘成林,王立成,等. 钾盐矿床成矿条件研究若干进 展[J]. 地球科学进展,2013,28(9):976-987.
- [4] 江梅. 我国盐湖地下卤水开采和采输卤设备[J]. 化工矿物 与加工,2003,32(9):25-27.
- [5] 李瑞琴,刘成林,陈侠,等. 江陵凹陷深层富钾卤水井内降温 析盐情况探讨[J]. 盐湖研究,2013,21(1):1-6.
- [6] 孟令阳,杨飞,李瑞琴,等.湖北荆州江陵凹陷富钾卤水综合
   利用工艺实验研究[J].化工矿产地质,2017,39(1):46-51.
- [7] 刘成林.大陆裂谷盆地钾盐矿床特征与成矿作用[J].地球 学报,2013,34(5):515-527.
- [8] 王春连,刘成林,刘宝坤,等. 江陵凹陷古新统光卤石的发现 及其钾盐找矿意义[J]. 地质学报,2015,89(1):129-136.
- [9] 穆延宗, 乜贞, 朴令忠, 等. 我国油(气)田水钾资源研究进展[J]. 地球科学进展, 2016, 31(2):147-160.
- [10] 潘源敦,刘成林,徐海明.湖北江陵凹陷深层高温富钾卤水特征及其成因探讨[J].化工矿产地质,2011,33(2):65-72.
- [11] 吴坤,刘成林,焦鹏程,等.新疆库车盆地钾盐科探1井含

盐系地球化学特征及找钾指示[J]. 矿床地质, 2014, 33 (5):1011-1019.

- [12] 刘亚伟,张士万,刘涛等.深层天然卤水特征及成因探 讨——以江陵凹陷深层天然卤水研究为例[J].矿床地质, 2013,32(6):1291-1299.
- [13] 高世扬,柳大纲.大柴旦盐湖夏季组成卤水的天然蒸发(含 硼海水型盐湖卤水的天然蒸发)[J].盐湖研究,1996,4(3 -4):73-86.
- [14] 陈敬清,刘子琴,房春晖,等.小柴旦盐湖卤水 25 ℃等温蒸 发[J].地质论评,1986,32(5):470-480.
- [15] 卜令忠, 乜贞, 宋彭生. 硫酸钠亚型富锂卤水 25 ℃等温蒸 发过程的计算机模拟[J]. 地质学报, 2010, 84(11): 1708 – 1713.
- [16] 崔瑞芝, 桑世华. 四元体系 Na<sup>+</sup>, K<sup>+</sup>//Br<sup>-</sup>, SO<sub>4</sub><sup>2-</sup> H<sub>2</sub>O 373 K相平衡[J]. 化工学报, 2016, 4(67): 1123 - 1128.
- [17] 金作美,周惠南,王励生. Na<sup>+</sup>、K<sup>+</sup>、Mg<sup>2+</sup>//Cl<sup>-</sup>、SO<sub>4</sub><sup>2-</sup> -H<sub>2</sub>O五元体系 15 ℃介稳相图研究[J]. 高等学校化学学报, 2002,23(4):690-694.
- [18] 地矿部岩石矿物分析编写组. 岩石矿物分析第一分册
   [M]. 北京:地质出版社,1991.
- [19] 科列夫斯基 C M. 与卤素建造及其直接围岩有关的矿物组合(溴、碘、铷、锂、铯、铷……).卤素建造综合有用矿物 [G].成都:西南地质科学研究所.西南地质科技参考资料,国外沉积岩及其有关矿产(盐类矿床部分).1978,14: 49-62.

# The Isothermal Evaporation Law of Xiangli Salt Brine at 50 °C

YAN Kai<sup>1</sup>, CAI Xiao-lin<sup>2</sup>, LI Rui-qin<sup>3</sup>, WANG Chun-lian<sup>3</sup>, LIAO Lei<sup>4</sup>, YU Xiao-can<sup>5</sup>

(1. The Academy of Earth Sciences at Yangtze University, Wuhan, 430100, China; 2. The Second Geological

Brigade of Hebei Coal Geology Bureau, Xingtai, 054001, China; 3. The Ministry of Land and Resources

Key Laboratory for Mineralization and Resources Evaluation, Institute of Mineral Resources of

Chinese Academy of Geological Sciences, Beijing, 100037, China; 4. The Academy of

Geophysic and Oil Resources at Yangtze University, Wuhan, 430100, China;

5. China University of Geosciences, Beijing, 100083, China)

**Abstract**: The xiangli salt mine locates in the south rim of jiangling sag, the area of brine and potassium in the area has reached the industrial grade. Xiang li salt brine samples for the chemical analyses, and the results of analysis are studied, find out the the elements such as potassium and bromine in bittern enrichment mechanism; The technical route and feasibility suggestions for the comprehensive utilization of brine were put forward. Isothermal evaporation experiments show that the evaporation process, has the stone salting out, loss of water reached 31.23%, the glauber's salt precipitation, since then, rock salt and glauber's salt precipitation. The analysis of the salt in the whole evaporation process is: the sodium chloride is precipitated firstly, then the sodium sulphate is precipitated and the potassium sulfate is precipitated at last.

Key words: Jiangling depression; The halogen salt mine in Xiangli; Isothermal evaporation; Law of salting