DOI:10.12119/j. yhyj. 202102009

盐湖提锂副产氢氧化镁绿色合成 镁基层状复合氢氧化物

杨佳元^{1,2,3},樊发英^{1,2},朱朝梁^{1,2},史一飞^{1,2},樊 洁^{1,2},邓小川^{1,2}

(1. 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,青海 西宁 810008;

2. 青海省盐湖资源综合利用工程技术中心,青海 西宁 810008;

3. 中国科学院大学,北京 100049)

摘 要:青海盐湖资源丰富,在盐湖提锂过程中副产了大量含锂 Mg(OH)2镁渣,由于利用条件和工艺的限制,其 大部分被企业堆置放弃,造成资源的严重浪费和生态环境的破坏,因此提锂副产镁渣的高值化利用具有重要的意 义。本研究仅采用盐湖提锂副产镁渣和可溶性铝盐作为原料,采用水热法成功制备了 SO²⁻和 CO₃²⁻ 插层的镁基 层状复合金属氢氧化物(LDHs)。并通过 XRD、FT - IR、Raman、TG - DTG 等手段对产物的结构、形貌等进行了表 征。制备过程中不需要加入其他碱作为沉淀剂,不产生钠盐或铵盐等副产物,产物只需少量水洗涤即可,是一种 绿色、经济的制备工艺。此外,在反应过程中可将镁渣中 90% 的锂进行回收,不仅实现了副产镁渣的高值化利 用,还回收了夹带的锂,对盐湖镁锂资源综合高效利用提供了一种有效途径。

关键词:层状复合氢氧化物;水热法;氢氧化镁

中图分类号:0614.22 文献标识码:A

文章编号:1008-858X(2021)02-0079-07

随着我国经济的快速发展,锂的需求量呈爆 发式增长。我国锂资源大部分储存于青海、西藏、 内蒙古等盐湖中,但由于我国盐湖镁锂比高的特 点,导致锂资源开采的同时副产了大量含锂的 Mg (OH)₂镁渣。副产 Mg(OH)₂纯度低,杂质含量 高、种类多,难于直接利用,因此绝大部分被企业 遗弃,造成镁资源的严重浪费和生态环境的破坏。 因此,开展盐湖提锂副产 Mg(OH)₂镁渣的高值化 利用研究具有重要意义。

层状双羟基复合氢氧化物(LDHs),简称水滑 石,是一种多功能层状材料。LDHs 的化学通式 为 $[M_{1-x}^{2+}M_x^{3+}(OH)_2]^{x+}A_{(x/n)}^{n-}$ ·yH₂O。其中 M²⁺ 和 M³⁺分别代表二价金属阳离子和三价金属阳离 子,Aⁿ⁻代表层间阴离子,y 代表层间水分子的数 量^[1]。由于 LDHs 的层板阳离子及层间阴离子具 有可调变的性质,使其拥有许多独特的物理化学 特性,在阻燃^[2],催化^[3],紫外吸收^[4],医药^[5]等 领域有着广泛应用。因此,制备镁基层状复合氢 氧化物是解决"镁害"和盐湖镁资源综合高效利 用的有效途径。

LDHs 主要的合成方法包括共沉淀法^[6],离 子交换法^[7],水热法^[8],焙烧还原法^[9]等;其中共 沉淀法工艺简单、成本低,是合成水滑石最常用的 方法。然而传统的沉淀法制备 LDHs 多采用可溶 性镁盐(如 MgCl₂,Mg(NO₃)₂,MgSO₄等)为原料, 且通常需要加入 NaOH,Na₂CO₃,氨水等碱作为沉 淀剂,不仅成本较高,还对设备和操作人员的防 腐、防护有较高要求。此外,反应还会生成廉价钠 盐或铵盐,需大量水对产品进行洗涤,造成了水资 源的浪费。而以 Mg(OH)₂为原料制备 LDHs 的

通讯作者:樊发英(1988-),女,博士,助理研究员。研究方向:盐湖资源提取及应用研究,无机功能材料制备及应用。Eeail;fanfy@isl.ac.cn。

收稿日期:2020-02-22;修回日期:2020-03-09

基金项目:青海省科技厅科技成果转化专项(2016CX - 103),青海省科技厅自然基金(2016ZJ - 927Q);西部之光 B 类项目 (Y610101037),中国科学院弘光专项(KFJ - HG - ZX - 008)。

作者简介:杨佳亓(1993-),男,硕士研究生。研究方向:盐湖镁资源高值化利用研究。

邓小川(1966-),男,研究院,博士生导师。研究方向:盐湖提锂关键技术,盐湖锂资源高值化利用,盐湖镁硼资源高值精 细品加工技术及装备。

研究相对较少。Xu 和 $Li^{[10]}$ 等提出了一种以 Mg $(OH)_2, Al(OH)_3 \pi (NH_4)_2 CO_3 为原料绿色合成 MgAl - CO_3 - LDHs 的工艺,反应没有副产物生 成,洗涤和过滤步骤也可以省略,工艺绿色简单, 但由于碳酸铵的存在,反应过程需要高压环境。因此,探索以 Mg(OH)_2 为原料制备 LDHs 的合成 方法非常必要。$

本文拟采用盐湖提锂副产 Mg(OH)₂为镁源 和碱源,通过水热法成功合成了 MgAl – LDHs,并 考察了铝源对反应产物的影响。此外,还对副产 Mg(OH)₂镁渣中夹带的锂进行了回收,为实现盐 湖镁资源的高值化利用以及盐湖资源综合高效利 用提供一种有效途径。

1 实验部分

1.1 实验原料

某盐湖提锂工艺副产镁渣,其组分分析如表 1 所示,其中主要组分为 Mg(OH)₂(纯度为 76%)。AlCl₃ · 6H₂ O、Al(NO₃)₃ · 9H₂ O、Al₂ (SO₄)₃ · 18H₂O(分析纯)由国药集团化学试剂 有限公司提供。

表1 副产氢氧化镁组分分析

		Table 1	The cor	The component analysis of by - product					
离子种类	Mg^{2} +	Ca ²⁺	Li ⁺	K *	Na ⁺	Cl -	CO_{3}^{2} -	Si	В
含量/%	31.45	0. 91	2. 26	0. 43	1. 59	9.75	11.7	0. 07	0.062

1.2 实验主要仪器及设备

均相反应器(JFX - 12 - 200),烟台松岭化工 设备厂生产;电热鼓风干燥箱(GZX - 9240 MBE),上海博讯实业有限公司医疗设备厂生产; X射线衍射仪(XRD;X'PRO Pert),帕纳科仪器 (荷兰)有限公司生产;低真空扫描电子显微镜 (SEM;JSM - 56 10LV),日本电子株式会社生产; 红外光谱仪(FT - IR;NEXUS),热电 - 尼高力(美 国)公司生产;拉曼光谱仪(Raman;DXR)赛默飞 世尔(美国)公司生产;同步热分析仪(TGA/DSC 3+),梅特勒—托利多(瑞士)有限公司生产。

1.3 实验内容

称取副产 Mg(OH)₂ 3.48 g 并以 Mg(OH)₂: Al³⁺摩尔比为4: 1 分别称取 Al(NO₃)₃ · 9H₂O、 AlCl₃ · 6H₂O 或 Al₂(SO₄)₃ · 18H₂O,将副产 Mg (OH)₂和铝盐加入至 150 mL 去除 CO₂的去离子 水中,剧烈搅拌 2 h 后于 160 ℃下反应 12 h,最后 产物经去离子水洗涤、干燥后得到 MgAl – LDHs 产品。

2 结果与讨论

2.1 样品 XRD 分析

3 种不同铝源合成 MgAl - LDHs 的 XRD 测

图 1 (a) MgAl - CO_3 - LDHs¹, (b) MgAl - CO_3 - LDHs², (c) MgAl - SO₄ - LDHs 的 XRD 图 **Fig.** 1 XRD patterns of (a) MgAl - CO₃ - LDHs¹, (b) MgAl - CO₃ - LDHs², (c) MgAl - SO₄ - LDHs

试结果如图 1 所示。当铝源为 Al(NO₃)₃ · 9H₂O 和 AlCl₃ · 6H₂O 时,所得 MgAl – LDHs 的特征衍 射峰均与 CO₃²⁻ 插层水滑石 MgAl – CO₃ – LDHs 的峰形吻合^[11]:样品均在 2θ = 11.5°、23.2°出 现了倍数峰,对应 MgAl – CO₃ – LDHs 的(003)、 (006)晶面衍射峰,同时,60.7°、62.0°分别对应 (110)、(113)的晶面衍射峰,两个样品分别记为 MgAl – CO₃ – LDHs¹和 MgAl – CO₃ – LDHs²;当铝 源为 Al₂(SO₄)₃ · 18H₂O 时,样品在 2θ = 10.0°、 20.1 °对应 MgAl – LDHs 的(003)、(006)晶面衍 射峰,所得产物为 SO_4^{2-} 插层的 MgAl – LDHs,记 为 MgAl – SO₄ – LDHs。3 个样品衍射峰峰形尖 锐,基线平稳,均有 LDHs 的特征衍射峰,且均未 检测到原料 Mg(OH)₂或其他杂质的特征峰,所得 产物较纯。由表 1 可知原料副产 Mg(OH)₂中含 有大量 CO_3^{2-} ,当采用 Al(NO₃)₃·9H₂O、AlCl₃· 6H₂O 为铝源时,均得到 CO_3^{2-} 插层的 LDHs,这是 由于 CO_3^{2-} 比 NO₃⁻、Cl⁻ 价态高,与 LDHs 层板结 合力更强,因此在反应过程中更易进入 LDHs 层 间。而采用 Al₂(SO₄)₃·18H₂O 为铝源时,在反 应过程中 $SO_4^{2^-}$ 进入到 LDHs 层间, $CO_3^{2^-}$ 与溶液 中的 Mg^{2^+} 结合形成 $MgCO_3$, 这说明在此实验条件 下, $SO_4^{2^-}$ 比 $CO_3^{2^-}$ 更易进入 LDHs 层间。

3 种不同 MgAl – LDHs 的晶面间距以及晶胞 参数分析结果如表 2 所示。MgAl – CO₃ – LDHs¹、 MgAl – CO₃ – LDHs²的晶面间距 d(003)分别为 0.765 0 nm,0.768 2 nm 与 CO₃²⁻ 插层的水滑石 MgAl – CO₃ – LDHs 的晶面间距吻合^[12]。MgAl – SO₄ – LDHs 晶面间距 d(003)为 0.881 9 nm,与文 献报道的 MgAl – SO₄ – LDHs 晶面间距一致^[13]。

表 2 3 种不同铝源制备水滑石的晶面间距及晶胞参数 Table 2 Laver spacing and lattice parameters of different anionic intercalated hydrotalcite

样品	d_{003} /nm	d_{006} /nm	$d_{\rm 110}/{\rm nm}$	晶胞参数 a/nm	晶胞参数 c/nm
$MgAl - CO_3 - LDHs^1$	0.765 0	0.381 1	0. 152 4	0.3054	2.34
$MgAl - CO_3 - LDHs^2$	0.768 2	0.383 0	0. 152 6	0.3054	2.34
$MgAl - SO_4 - LDHs$	0.881 9	0.441 1	0. 152 4	0.3054	2.34

图 2 (a) MgAl - CO₃ - LDHs¹, (b) MgAl - CO₃ - LDHs², (c) MgAl - SO₄ - LDHs 的红外光谱图

Fig. 2 FT – IR spectra of (a) MgAl – CO_3 – LDHs¹, (b) MgAl – CO_3 – LDHs², (c) MgAl – SO_4 – LDHs

2.2 样品 FT - IR 分析

3 种 MgAl - LDHs 的傅里叶变换红外光谱图 如图 2 所示。图中,在 3 450 cm⁻¹处均为 OH⁻ 的

伸缩振动峰,在1650 cm⁻¹附近为 H₂O 的弯曲振 动峰,400 cm⁻¹ ~ 800 cm⁻¹范围内是 M – O 和 O – M – O(M = Mg, Al)的晶格振动带。MgAl – CO₃ – LDHs¹(图 2a)与 MgAl – CO₃ – LDHs²(图 2b)在3070 cm⁻¹处均有一个肩峰,这是由 H₂O

图3 (a) MgAl - CO₃ - LDHs¹, (b) MgAl - CO₃ - LDHs², (c) MgAl - SO₄ - LDHs 的拉曼散射光谱图

Fig. 3 Raman shift spectra of (a) MgAl - CO₃ - LDHs¹, (b) MgAl - CO₃ - LDHs², (c) MgAl - SO₄ - LDHs

与 CO_3^{2-} 之间的氢键作用产生的,同时在 1 355 cm⁻¹处的吸收峰是由 CO_3^{2-} 的反对称伸缩 振动所产生的^[14],此外图谱中未检测到与 Cl⁻与 NO₃⁻ 的特征峰^[15-16],说明在反应过程只有 CO_3^{2-} 进入了 LDHs 层间。MgAl – SO₄ – LDHs(图 2c) 在 1 107 cm⁻¹与 613 cm⁻¹处分别为 SO₄²⁻ 的反对 称伸缩振动峰与反对称弯曲振动峰^[17],同时未检 测到 CO_3^{2-} 的吸收峰,说明产物中没有 CO_3^{2-} ,即 得到的产品为纯 MgAl – SO₄ – LDHs。

2.3 样品拉曼分析

为进一步考察合成样品的结构,对 MgAl – CO₃ – LDHs¹, MgAl – CO₃ – LDHs² 与 MgAl – SO₄ – LDHs 进行拉曼光谱测试,结果如图 3 所示。3 个样品在558 cm⁻¹处均为 Mg – OH 与 Al – OH 所产生的振动峰。MgAl – CO₃ – LDHs¹(图 3a) 与 MgAl – CO₃ – LDHs²(图 3b)分别在

1 062 cm⁻¹处和 1 064 cm⁻¹处可以观察到强烈的 振动峰,结合红外分析可推断这是由于 CO₃²⁻ 的 对称伸缩振动所产生的,在 679 cm⁻¹和 690 cm⁻¹ 处可以观察 CO₃²⁻ 的反对称伸缩振动峰^[18],且谱 图中没有检测到 Cl⁻与 NO₃⁻ 的特征峰^[17],说明 反应得到了纯 CO₃²⁻ 插层的 MgAl – LDHs。MgAl – SO₄ – LDHs(图 3c)在 980 cm⁻¹处可以观察到 一个很强的 SO₄²⁻ 对称伸缩振动峰,在 454 cm⁻¹ 和 618 cm⁻¹处能分别为 SO₄²⁻ 的对称弯曲振动和 反对称弯曲振动峰,同时在 1098 cm⁻¹能观察到 一处宽峰,这是 SO₄²⁻ 的反对称伸缩振动所产生 的^[19],同时没有发现 CO₃²⁻ 的特征峰,进一步说 明产物 MgAl – SO₄ – LDHs 中没有 CO₃²⁻ 存在。

2.4 样品 SEM 分析

副产 Mg(OH)₂及3种 MgAl - LDHs 的形貌 表征结果如图4所示。副产Mg(OH)₂为片状结

(a) Mg(OH)₂,(b) MgAl - CO₃ - LDHs¹,(c) MgAl - CO₃ - LDHs²,(d) MgAl - SO₄ - LDHs 图 4 副产 Mg(OH)₂及不同 MgAl - LDHs 的扫描电镜图: Fig. 4 The SEM images

构,其粒径约为 0.14 μ m。产物 MgAl – CO₃ – LDHs¹,(c)MgAl – CO₃ – LDHs²也均为片状结构, 平均粒径分别为 0.15 μ m,0.16 μ m,由于 LDHs 主体层板内的相互作用力大于层板与层间阴离子 的相互作用力,样品沿横向生长。而 MgAl – SO₄ – LDHs 呈现出无规则碎片状形貌,这可能是 由于 SO₄² 的离子半径较大,同时所带电荷量较 高所导致的。

2.5 TG - DTG 分析

MgAl – CO₃ – LDHs¹, MgAl – CO₃ – LDHs², MgAl – SO₄ – LDHs 的热重及微分热重曲线如图 5 所示。样品的热分解过程分为 3 个阶段:第 1 失 重阶段主要在 230℃之前,3 种 MgAl – LDHs 的失 重率分别为 11. 23%, 12. 97%, 11. 48%, 这是由 于 LDHs 层间 H₂O 和结晶 H₂O 的脱除,此时材料 仍保持 LDHs 的层状结构;第 2 失重阶段主要在 230 ℃ ~ 530 ℃之间,3 种 LDHs 失重率分别为

27.11%,28.69%,22.56%,这是由于层板羟基以及层间阴离子的脱除,此时LDHs的层状结构被

图 5 (a) MgAl - CO₃ - LDHs¹, (b) MgAl - CO₃ - LDHs², (c) MgAl - SO₄ - LDHs 热重及差热分析曲线 Fig. 5 The TG - DTG curves

破坏;第3失重阶段主要在530℃之后,3种 LDHs在此阶段的失重率分比为1.78%,2.32%, 2.69%,主要是由于层板金属氢氧化物向金属氧 化物的转化。 进一步通过 ICP 对 3 种 MgAl - LDHs 样品的 镁铝比进行了分析,结合热重分析得出相应的分 子式如表 3 所示。

表3 不同铝源所制备水滑石的镁铝比及相应分子式

Table 3	The magnesium – aluminum ratio and the corresponding molecular formula of	
	hydrotalcite prepared from different aluminum sources	

样品	镁铝比 ^ª	分子式 ^b
$MgAl - CO_3 - LDHs^1$	1. 90: 1	$[\mathrm{Mg}_{0.66}\mathrm{Al}_{0.34}(\mathrm{OH})_{2}](\mathrm{CO}_{3})_{0.17}\boldsymbol{\cdot}0.49\mathrm{H}_{2}\mathrm{O}$
$MgAl - CO_3 - LDHs^2$	2. 18: 11	$\left[\ Mg_{0.69} Al_{0.31} (\ OH)_{2} \ \right] (\ CO_{3})_{0.16} \cdot 0. 57 H_{2} O$
$MgAl - SO_4 - LDHs$	2.60:11	$[Mg_{0.72}Al_{0.28}(OH)_{2}](SO_{4})_{0.14}$ \cdot 0. 52H ₂ O

a镁铝比由 ICP 测得;b水分子由 TG - DTG 测得

由分子式可知,原料副产 Mg(OH)₂中的 Mg²⁺并未全部进入到层板之间,其余的 Mg²⁺以 镁盐形式存在,反应结束后的母液可进行回收生 产其他镁产品。

和 $MgAl - SO_4 - LDHs^*$ 反应结束后的上清液以 8 000 $r \cdot min^{-1}$ 的转速进行离心分离后,回收上清 液体积约为 146 mL,并分别取 3 种反应结束后的 上清液 2 mL,然后用高纯水稀释至 10 mL。对溶 液中 Li⁺浓度进行测试,所得结果如表 4 所示。

2.6 MgAl - LDHs 制备过程中锂的测定

 $\sqrt[37]{MgAl} - CO_3 - LDHs^1 MgAl - CO_3 - LDHs^2$

表 4 不同 MgAl – LDHs 与上清液中 Li⁺含量

Table 4 The content of Li + in supernatant prepared from different aluminum sources

样品	$MgAl - CO_3 - LDHs^1$	$MgAl - CO_3 - LDH^2$	$MgAl - SO_4 - LDHs$
上清液 Li ⁺ 浓度/(mg・L ⁻¹)	96.43	98. 81	94. 24
Li 回收率/%	90.20	92. 43	88. 15

从盐湖提锂副产 Mg(OH)₂的组分分析中可 知其中 Li⁺含量为 2.26%。通过 ICP 测得反应结 束后上清液中 Li⁺浓度约为 482.47 mg · L⁻¹。经 过计算可知约 90% 的 Li⁺ 从副产 Mg(OH)₂中溶 解进入到了液相,进入液相的 Li⁺可进一步进行 回收。

3 结 论

本研究以盐湖提锂副产 Mg(OH)₂镁渣为原 料,成功制备了以 CO²⁻₃和 SO²⁻ 插层的 MgAl – LDHs。本工艺仅使用 Mg(OH)₂和可溶性铝盐作 为原料,在反应中不需要加入其他碱作为沉淀剂, 不生成碱盐或铵盐等副产品,仅需少量水洗涤即 可,是一种绿色可控的合成工艺。同时在反应过 程中,约 90% 的 Li⁺在反应结束后由副产 Mg(OH)₂中溶解进入液相,可对其进行进一步回 收利用。本工艺不仅实现了副产氢氧化镁的高值 化利用,而且可回收夹带的锂资源,对盐湖镁锂资 源综合高效利用提供了一种有效途径。

参考文献:

- Vaccari A. Clays and Catalysis: A Promising Future [J]. Applied Clay Science, 1999, 14(4):161 198.
- [2] 冯光峰,陈永辉,徐世前.水滑石基阻燃聚丙烯材料性能研究[J]. 塑料助剂,2019(3):38-41.
- [3] 沈显荣,孟跃,夏盛杰.水滑石负载 AuCu 合金催化水煤气 变换反应:催化性能与结构组成[J].无机化学学报,2019, 35(7):1239-1247.
- [4] Zhang Y, Yang J, Fan F, et al. Effect of Divalent Metals on the UV – Shielding Properties of M^{II}/MgAl Layered Double Hydroxides[J]. ACS Omega, 2019, 4(6):10151 – 10159.
- [5] 李岩.纳米水滑石作为医药载体与 Hela 细胞作用后生物 效应的探究[D]. 华中师范大学,2008.

- [6] Li M, Cai Z, Yang Y, et al. Preparation and characterization of Sb – doped SnO₂ (ATO) nanoparticles with NIR shielding by an oxidation coprecipitation hydrothermal method [J]. Journal of Dispersion Science and Technology, 2019:1 –9.
- [7] Crepaldi E, Pavan P, Valim J. Anion exchange in layered double hydroxides by surfactant salt formation [J]. Journal of Materials Chemistry, 2000, 10(6):1337 – 1343.
- [8] Benito P, Guinea I, Labajos F, et al. Microwave hydrothermally aged Zn, Al hydrotalcite – like compounds: Influence of the composition and the irradiation conditions[J]. Microporous and Mesoporous Materials, 2008, 110(2-3):292-302.
- [9] Carlino S, Hudson M, Husain S, et al. The reaction of molten phenylphosphonic acid with a layered double hydroxide and its calcined oxide [J]. Solid State Ionics, Diffusion & Reactions, 1996,84(1-2):117-129.
- [10] Xu X, Li D, Song J, et al. Synthesis of Mg Al carbonate layered double hydroxide by an atom – economic reaction [J]. Particuology. 2010,8(3), 198 – 201.
- [11] 李博. 阴离子型层状材料水滑石的制备与晶体形貌控制 研究[D]. 北京化工大学,2008.
- [12] Ogawa M, Kaiho H. Homogeneous Precipitation of Uniform Hydrotalcite Particles [J]. Langmuir, 2002, 18 (11): 4240 – 4242.

- [13] Hussein M, Hwa T. Synthesis and Properties of Layered Organic – inorganic Hybrid Material: Zn – Al Layered Double Hydroxide – dioctyl Sulfosuccinate Nanocomposite [J]. Journal of Nanoparticle Research, 2(3):293 – 298.
- [14] Yang W, Kim Y, Paul K, et al. A study by in situ techniques of the thermal evolution of the structure of a Mg - Al - CO₃ layered double hydroxide [J]. Chemical Engineering Science, 2002,57(15):2945 - 2953.
- [15] Abbasian M. Exfoliated poly (styrene co methylstyrene) grafted - polyaniline/layered double hydroxide nanocomposite synthesized by solvent blending method[J]. Journal of Applied Polymer Science, 2011, 122(4):2573 - 2582.
- [16] 郭亚平,吕君英,龚凡.氧化吸附法合成硝酸根型铜铁铝 类水滑石[J].材料科学与工艺,2008,16(06):821-825.
- [17] Ross S D. Inorganic infrared and Raman spectra [M]. 1972: 140.
- [18] 段雪,张法智.插层组装与功能材料[M].化学工业出版 社,2007:125-128
- [19] Kloprogge J, Wharton W, Hickey L, et al. Infrared and Raman study of interlayer anions CO₃₂₋, NO₃₋, SO₄₂₋ and ClO₄₋ in Mg/Al – hydrotalcite [J]. American Mineralogist, 2015, 87 (3):623-629.

Green Route of MgAl Layered Double Hydroxides Using By-product of Magnesium Hydroxide Produced by Lithium Extraction from Salt Lakes

YANG Jia - qi^{1,2,3}, FAN Fa - ying^{1,2}, ZHU Chao - liang^{1,2}, SHI Yi - fei^{1,2}, FAN Jie^{1,2}, DENG Xiao - chuan^{1,2}

(1. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China;

2. Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake

Resources, Xining, 810008, China; 3. University of Chinese Academy of Sciences, Beijing, 100049, China)

Abstract: The salt lake resources are rich in Qinghai. In the process of lithium extracting, a large amount of by – products of $Mg(OH)_2$ containing lithium produced. However, limited by cost and technology, most $Mg(OH)_2$ was abandoned directly. In this study, the by – product $Mg(OH)_2$ is used as raw material and hydro-thermal synthesis method is employed to prepare MgAl – LDHs. The structure and morphology of the MgAl – LDHs were characterized by XRD, FT – IR, Raman and TG – DTG. This process only uses $Mg(OH)_2$ and soluble aluminum salts as raw materials, and it's not necessary to add alkali as a precipitating agent. In addition, there are few by – products produced and only a small amount of water needed to wash the product. Meanwhile, about 90% Li⁺ in by – product $Mg(OH)_2$ entered the liquid phase after the reaction, which could be further recycled. This process finally realized the goal of waste recycling and efficient utilization of salt lakes resources.

Key words: Layered double hydroxides; Hydrothermal method; Magnesium hydroxide