DOI:10.12119/j. yhyj. 202103009

三氟乙酸锂 – 15 – 冠醚 – 5 体系电迁移法 分离锂同位素

黄超驰^{1,2,3},孙进贺^{1,2},张 茜^{1,2,3},张鹏瑞^{1,2,3}, 汪词明^{1,2,3},薛子轩^{1,2},景 燕^{1,2},贾永忠^{1,2}

(1. 中国科学院青海盐湖研究所,盐湖资源综合高效利用重点实验室,青海 西宁 810008;
 2. 青海盐湖资源综合利用技术研究开发中心,青海 西宁 810008;3. 中国科学院大学,北京 100049)

摘 要:锂同位素(⁶Li和⁷Li)在核工业中有着重要作用。锂汞齐法是目前唯一实现锂同位素工业化生产的方法, 然而由于汞的使用,该方法具有较大的环境风险。开发绿色高效的锂同位素分离方法对国家能源安全具有重要 意义。在本论文中,制备了溶解锂盐的冠醚溶液,并以其作为阳极液,施加电场驱动锂离子向阴极液迁移;与溶有 15-冠醚-5的锂盐水溶液作为阳极液相比,研究发现在阳极液体系中引入水分子可以促进锂同位素的分离。 同时还考察了不同隔膜对锂同位素分离的影响,发现使用强疏水性隔膜时,短时间内有较好的分离效应。

关键词:锂同位素分离;15 - 冠醚 - 5;电迁移;水合作用

中图分类号:TQ131.11 文献标识码:A 文章编号:1008-858X(2021)03-0083-07

人类社会的日益发展增加了人们对能源的大 量需求,石油、天然气、煤炭等不可再生能源的使 用给环境造成了一定的压力,对生态环境和人类 健康带来危害。核能成为我国清洁能源时代发展 的必然选择。自然界中稳定存在的锂同位素有两 种, 即⁶ Li π^7 Li, 自然 丰 度 分 别 约 为 7.5% 和 92.5%^[1]。高丰度的⁶Li产品是生产核聚变堆燃 料关键的原料^[2]。高纯度⁷LiBeF 被用作钍堆熔 盐介质,⁷LiOH 则被用作核裂变反应堆的堆芯冷 却剂和酸度调节剂^[3]。⁶Li和⁷Li相差一个中子,其 物理和化学性质具有细微差异,可以利用这些细 微差异实现分离。锂同位素分离方法有电化学 法、锂汞齐法、溶剂萃取法、激光分离法、离子交换 色谱法等。唯一产业化的锂汞齐法对环境有较大 的危害,而电化学法作为新型绿色的分离方法近 年来引起了诸多研究学者的关注和重视。

电迁移法属于电化学法中的一种分离方法, 根据介质的不同可分为水溶液法、有机溶剂法、熔 盐法。水溶液法主要是利用锂同位素离子在水溶

液或隔膜中电迁移速率的差异实现分离。该方法 的电极反应发生于水溶液中,易于实现连续多级 分离。然而锂同位素分离系数和电流利用率较 低。日本东京工业大学 Kunugi^[4] 和弘前大学 Honda^[5]等合成了钛酸镧锂陶瓷膜,用于在水溶 液中电迁移分离锂同位素,取得了良好的分离效 果。熔盐法是利用锂同位素离子在高温熔盐中电 迁移速率的差异实现分离。该方法单级分离系数 高,电流利用率高。但存在高温熔盐、氯气和金属 锂腐蚀等问题,对装置材质要求极高。熔盐法至 20 世纪 40 年代由 Klemm 等^[6] 开始研究, 一直发 展至今。熔盐体系由单一熔盐发展至复合熔盐, 从氯化物发展至溴化物、碘化物和硝酸盐等,从无 膜分离发展至有膜分离。在该方法发展早期,以 色列国防部^[7]开发了氯化锂熔盐电迁移装置,获 得了十克级高丰度⁶Li 样品。进入 21 世纪以来, 日本东京工业大学^[8]、东北大学^[9]和上智大学^[10] 等相继对氯化锂、溴化锂和硝酸锂等混合熔盐体 系开展研究,并在LiNO, - NH4NO3体系获得最优

收稿日期:2021-02-02;修回日期:2021-03-02

基金项目:青海省重点研发与转化计划项目(No. 2021 - GX - 104,2019 - GX - 169);中科院青促会(2015351)

作者简介:黄超驰(1995-),女,硕士,研究方向:锂同位素的分离。Email:huangchaochi18@mails.ucas.ac.cn。

通信作者:孙进贺(1979-),男,研究员,主要从事锂同位素分离研究。Email:jhsun@isl. ac. cn。

分离效果,解决了腐蚀问题,获取了少量 94.9% 丰度的⁶Li 样品。西班牙能源与环境研究中心 Barrado 等^[11]提出了基于碘化锂熔盐的电泳分离 原型机,该装置以石英为壳,钛酸镧锂固态离子超 导体为膜,据其预测,单条100级连续分离的生产 线可年产15kg 纯⁶Li 产品。有机溶剂法是利用锂 同位素在溶剂、阴极、阳极材料中分配比差异实现 分离,锂离子会被部分还原成金属或形成插层化 合物。该方法可室温操作,反应条件温和。但该 方法难以进行多级连续化分离,电解质不可避免 发生分解。美国加州大学洛杉矶分校 Black 等^[12]在高氯酸锂的丙烯碳酸酯溶液中以镍电极 电沉积金属锂,发现⁷Li富集于溶液相,其单次分 离效果(2δ) 达到 3%。日本上智大学 Oi 课题 组^[13]发现在 LiMn, O₄ - 乙烯碳酸酯和甲基乙基 碳酸酯混合溶液体系中施加电场.°Li 富集于溶液 中,如更换为LiCoO₂^[14],⁷Li则富集于溶液中;此 外,该课题组还系统考察了高氯酸锂碳酸酯溶液 体系中,负极材料如镓[15]、石墨[16]、金属氧化 物^[17]和硫化物^[18]等对锂同位素的分离效应,发 现⁷Li 均倾向富集于溶液中;溶液改为离子液体 后,分离效应减弱^[19]。美国犹他大学 Zhang 等[20-21]利用不同种类的离子液体作为电迁移分 离介质,发现锂同位素离子的扩散系数和电迁移 速率在不同的离子液体中具有较大的差异,在优 选的离子液体中可以获得高达1.2 的单级分离系 数。

本课题组^[22]在前期研究工作中通过耦合水 溶液法和有机溶液法,构筑了锂离子—离子液 体—冠醚有机相阳极液 | 铵盐水相阴极液体系, 并在该体系中验证了锂同位素的电迁移分离效 应。然而离子液体电化学窗口有限,仅为-4V~ 4V之间,有机相溶液在高电压下与铂电极长期直 接接触,会造成部分离子液体的分解,进而造成有 机相的损耗,影响体系的锂同位素分离效应。

15 - 冠醚 - 5 室温下是无色透明粘稠液体, 具有较高的分解电压,其可溶解锂盐形成高浓度 的锂离子冠醚溶液。本论文在阳极液中不再引入 离子液体,以溶解了锂盐的15 - 冠醚 - 5 直接作 为阳极液,考察了电压、时间、水分和隔膜等对体 系中锂离子迁移和锂同位素分离的影响,探讨了 ⁶Li和⁷Li的富集行为。

1 实 验

1.1 实验试剂和设备

 $15 - 冠醚 - 5(分析纯, \ge 98\%),购买于北京$ 伊诺凯科技有限公司;三氟乙酸锂(CF₃COOLi,分析纯, ≥97%),购买于上海麦克林生化科技有限公司;氯化铵(NH₄Cl,分析纯, ≥99.5%),购买于天津市科密欧化学试剂有限公司;所有购置试剂均直接使用。实验用水为二次水。实验涉及的设备信息如下:单接收电感耦合等离子体质谱仪(ICP - MS,ELan 6100 DRC,美国赛默飞世尔科技公司);多接受电感耦合等离子体质谱仪(MC -ICP - MS,Neptune plus,Thermo Fisher Scientificink.,USA);超纯水仪(UPT - II - 20T,成都超纯科技有限公司);石墨消解仪(SH420,山东海能科学仪器有限公司);直流电源(DH1766 - 1,北京大华无线电仪器厂);接触角测量仪(DSA25,德国克吕士科学仪器有限公司)。

1.2 实验步骤

15 - 冠醚 - 5 为中性分子溶剂,在较高电压 下可稳定存在。由于 15 - 冠醚 - 5 具有良好的水 溶性,可在锂盐水溶液中加入 15 - 冠醚 - 5 或将 锂盐溶解于 15 冠醚 - 5 中作为阳极液,使其具有 较好的导电性能。实验装置示意图如图 1 所示。

图 1 实验装置示意图 Fig. 1 Schematic diagram of experimental device

1)溶有锂盐的15-冠醚-5作为阳极液

在 5 mL 15 - 冠醚 - 5 中溶入 0.001 mol CF₃COOLi,混合均匀后的溶液作为阳极液,5 mL 0.005 mol/L NH₄Cl 水溶液作为阴极液。两个电 极液之间用膜隔开,设置电流参数为1 A,电压参

数为2 V、4 V、8 V、16 V,设置不同时间间隔为 1 h、2 h、4 h、8 h、16 h,每次取出阴极液后用二次 水将阴极槽清洗三次后,再换上新的阴极液。对 每次取出的阴极液进行消解之后用 ICP - MS 测 锂离子浓度,MC - ICP - MS 测锂同位素值。选用 PP 膜、PTFE 膜两种不同的膜材料作为隔膜。考 察电压,时间以及不同膜材料对锂同位素分离的 影响。

2)溶有15-冠醚-5的锂盐水溶液作为阳极 液

将 0.001 mol 15 - 冠醚 - 5 加入到 5 mL 0.2 mol/LCF₃COOLi水溶液,将混合均匀的溶液 作为阳极液,5 mL 0.005 mol/L NH₄Cl 水溶液作 为阴极液。两个电极液之间用 PP 膜隔开。其他 实验条件与上述实验相同。考察电压、时间对有 机相中的锂离子向阴极液的迁移和同位素分离行 为。

2 结果与讨论

2.1 锂盐—冠醚阳极液 | 氯化铵水相阴极液体 系用于锂同位素分离研究

使用 PP 膜时, 阴极水溶液锂同位素值实验数据如图 2 所示, 锂离子浓度如图 3 所示。使用 PTFE 膜时, 阴极水溶液锂同位素值实验数据如

随时间的变化(PP 膜)

图 4所示,锂离子浓度如图 5 所示。PP 膜与 PTFE 膜的扫描电镜图如图 6 所示。已测得锂盐原液的 锂同位素值为 38.3。实验中未观察到阳极液变 色等分解现象。

由图2看出,使用 PP 膜时,阴极液锂同位素 值接近锂盐原液的锂同位素值(38.3),无明显锂 同位素分离效应。施加电场后,阳极液中的锂离 子大量迁移进入阴极液,阴极液锂离子浓度增大。 在电压作用下,阴极液锂离子浓度随时间的增加 而增大。由图4看出,使用 PTFE 膜时,阴极液锂 同位素值低于锂盐原液得锂同位素值(38.3),阴 极液富集⁶Li,且在短时间0~1h内锂同位素值的 差值达到-37.5。随着电压增大,锂同位素值增 大,富集⁶Li 效应减弱。究其原因,在纯有机相中, 基本不存在水分,依据文献报道^[23-26],15-冠 醚-5与锂离子络合时一般需要结合一个水分 子。锂离子在无水状态下与15-冠醚-5形成螯 合离子时,锂离子与冠醚上氧原子之间的键长为 3.887 Å^[23-26]; 而在结合一个水分子后, 锂离 子-15-冠醚-5 鳌合离子中锂与冠醚上氧原子 之间的键长缩短为2.26Å^[23-26]。可以确定的是, 水分的缺失会使得锂离子与 15 冠醚 - 5 的结合 不够稳定,难以发挥其对⁶Li离子的选择性螯合作 用。在电场作用下,锂盐-冠醚阳极液中的锂离子 更多的表现为游离锂离子而非锂-冠醚螯合离子。

图 3 不同电压下阴极液的锂离子浓度随时间的变化 (PP 膜)

Fig. 3 Variation of lithium isotope values in cathode solution with time under different voltages (PP membrane)

由图 3 和图 5 可以看出,使用 PP 膜时的阴极 液锂离子浓度较使用 PTFE 膜时测得的阴极液锂 离子浓度高,对两种不同的膜进行扫描电镜分析。 由图 6 可以看出,PTFE 膜的膜孔比 PP 膜大,但是 使用 PTFE 膜时,阴极液锂离子浓度低,结论与常 理不符。为此,测量 PP 和 PTFE 对水的静态接触 角,由图 7 发现,PP 对水的接触角为 101.73°,PT-FE 对水的接触角为 135.05°,因此 PTFE 膜的疏

图 4 不同电压下阴极液的锂同位素值随时间的 变化(PTFE 膜)

Fig. 4 Variation of lithium isotope values in cathode solution with time under different voltages (PTFE membrane)

水性更强,实验过程中传质受到影响,穿过膜的锂 离子通量降低,导致使用 PTFE 膜时测得的阴极 液锂离子浓度较低,⁶Li 和⁷Li 离子之间的迁移速 率差异能够得到较为充分的体现,表现出一定的 锂同位素分离效应,这点与日本原子能机构^[27-28] 得出的锂离子迁移率越低,锂同位素分离效应越 显著的结论相同。

图 5 不同电压下阴极液的锂同位素值随时间的 变化(PTFE 膜)

图 6 所用膜微观结构的 SEM 图(左图为 PTFE 膜,右图为 PP 膜) Fig. 6 SEM images of the microstructures of the membrane used

2.2 锂盐水溶液—冠醚阳极液 | 氯化铵水相阴极液用于锂同位素分离研究

测得的阴极水溶液中锂同位素值如图 8 所 示,锂离子浓度如图9所示,实验中未观察到阳极 液变色等分解现象。由图 8 可发现,在 2 V、4 V 的低电压作用下,阴极液锂同位素值低于锂盐原 液的锂同位素值,日锂同位素值先增大,随后逐渐 趋于平缓。低电压下,阴极液富集⁶Li效应逐渐减 弱后趋于稳定。说明锂同位素值的变化与低压处 理时间有直接关系。与锂盐原液的锂同位素值 (38.3)相比要低,但是差值不大。在含大量水分 的阳极液体系中,锂离子与配位水分子的键长仅 为1.965Å,显著短于锂离子与冠醚配位时的键长 (2.26 Å)^[23-26]。即使体系中存在15-冠醚-5, 在冠醚与水分子的锂离子配位竞争中,锂离子---水的配位体显然更为稳定,阳极液中的锂离子主 要与水分子结合。电场作用下,迁移的主体为水 合锂离子,锂同位素的分离效应也相应的表现为 水合⁶Li 比水合⁷Li 之间迁移速率的差异。低电压 短时间内,由于水合⁶Li比⁷Li少一个中子,迁移速 率更快,进入到阴极液中⁶Li的含量比⁷Li相对要 多,因此低电压下富集⁶Li。随着通电时间的延 长,迁入阴极液的锂离子增多,有机相中锂离子的 剩余量减少,水合⁷Li 迁入阴极液的数量也增多, 因此阴极液中锂同位素值先上升后逐渐平缓,°Li 的富集效果与0~1h相比降低。低电压下作用 长时间的有机相中⁶Li 数量减少,因此施加高电压 后,短时间内阴极液富集°Li,随着时间延长,阴极 液逐渐富集⁷Li。阴极水溶液中的锂离子浓度由

第3期

图 9 可看出,低电压下,锂离子浓度缓慢增加;高 电压下,电场作用增强,阳极液中的锂离子受电场 作用大量迁移进入阴极水溶液。随着时间的增 加,阳极液中锂离子的剩余量减少,可迁移的锂离 子减少,因而阴极水溶液中锂离子浓度开始下降。

3 结 论

1)以溶解了锂盐的液体冠醚(15 - 冠醚 - 5) 作为阳极液,氯化铵水溶液作为阴极液,使用 PP 膜时,未测得有明显的锂同位素分离效应。而使 用 PTFE 膜时,在较短时间(0~1 h)和较低电压 (2 V)下,⁶Li 在阴极液中具有较好的富集效应, 但富集效应随时间延长和电压升高迅速弱化。 PTFE 膜极强的疏水性能造成体系的锂离子迁移 通量远低于 PP 膜。

2)以锂盐水溶液和液体冠醚的混合物作为 阳极液,氯化铵水溶液作为阴极液。在4V以下 的电压下,阴极液迁入的锂离子富集⁶Li,时间对 锂离子迁入速率影响不大;随电压升高,阴极液迁 入的锂离子转变为富集⁷Li,且迁入的锂离子浓度 呈现先升高后降低的趋势。该实验体系中15-冠醚-5对锂同位素的分离无明显作用,主要利 用水合⁶Li和⁷Li的迁移速率差异实现分离。

3)与课题组以萃取后负载锂离子的离子液 体一冠醚体系作为阳极液的前期工作相比,本论 文分别以溶有锂盐的15-冠醚-5和溶有15-冠醚-5的锂盐水溶液作为阳极液,阳极液中有 机组分的分解明显得以缓解,迁入阴极氯化铵水 溶液的锂离子浓度明显增高,但锂同位素分离效 应减弱。其主要原因在于锂离子在本论文选用的 阳极液中无法与冠醚产生有效的鳌合作用,致使 冠醚的选择性分离效应难以体现。

参考文献:

- Xiang Y, Zhu Z, Xiang X. Problems of lithium isotope research in salt lake study [J]. Acta Geologica Sinica, 2014, 88 (S1): 165 - 166.
- [2] Slater J. Nuclear Wastelands: A global guide to nuclear weapons production and its health and environmental effects [J]. Nature Medicine. 1995, 1:1208 – 1209.
- [3] National Research Council (U. S.). Nuclear waste: Technologies for separations and transmutation [M]. Washing ton DC:

National Academies Press, 1996.

- [4] Kunugi S, Inaguma Y, Itoh M. Electrochemical recovery and isotope separation of lithium ion employing lithium ion conductive perovskite-type oxides [J]. Solid State Ionics, 1999, 122 (1-4):35-39.
- [5] Honda S, Shin-mura K, Sasaki K. Lithium isotope enrichment by electrochemical pumping using solid lithium electrolytes
 [J]. Journal of the Ceramic Society of Japan, 2018, 126(5): 331 - 335.
- [6] Klemm V A, Dahlem B. Zur phamomenologie der trennverfahren
 [J]. Z Naturforsch A-Zeitschrift Fur Naturforschung Section A-A Journal of Physics Sciences, 1944, 123 (1/2):10 - 27.
- [7] Benarie M M. Enrichment of the ⁶Li-isotope in dekagram quantities by electromigration in molten lithium chloride[J]. Journal of Inorganic and Nuclear Chemistry, 1961, 18:32-41.
- [8] Okada I, Gundo K, Nomura M, et al. High enrichment of Li-6 by countercurrent electromigration in molten LiNO₃ with molten NH₄NO₃ at the cathode[J]. Zeitschrift Für Naturforschung A, 1986,41(8):1045 – 1050.
- [9] Yoshinobu Y, Shin S. Studies on isotope separation of lithium by electromigration in fused lithium bromide and potassium bromide mixture, (III): enrichment of lithium-6 [J]. Journal of Nuclear Science and Technology, 1970, 7(12):631-634.
- [10] Okada I, Nomura M, Haibara T. High enrichment of ⁶Li in molten nitrates by the klemm method [J]. Z Naturforsch A-Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, 2013, 68 (1/2):21-38.
- [11] Barrado A I, Fernandez M, Conde E, et al. Preliminary studies of in-cell electrophoresis as ⁶Li enrichment technique [J]. Fusion Engineering and Design, 2011, 86 (9-11): 2662 - 2665.
- [12] Black J R, Umeda G, Dunn B, et al. Electrochemical isotope effect and lithium isotope separation[J]. Journal of the American Chemical Society, 2009, 131 (29):9904 - 9905.
- [13] Okano K, Takami Y, Yanase S, et al. Lithium isotope effects upon electrochemical release from lithium manganese oxide [J]. Energy Procedia, 2015, 71:140-148.
- [14] Takami Y, Yanase S, Oi T. Lithium isotope effects upon electrochemical release from lithium cobalt oxide to non-lithium electrolyte solution [J]. Z Naturforsch A-Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, 2014, 69 (1/ 2):97-103.
- [15] Zenzai K, Yasui A, Yanase S. Lithium isotope effect accompanying electrochemical insertion of lithium into liquid gallium [J]. Z Naturforsch A-Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, 2010,65(5):461-467.
- [16] Yanase S, Hayama W, Oi T. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite[J]. Z Naturforsch A-Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, 2003, 58 (5/6):306-312.
- [17] Mouri M, Asano K, Yanase S. Lithium isotope effects accompa-

nying electrochemical insertion of lithium into metal oxides [J]. Journal of Nuclear Science and Technology, 2007, 44(1): 73 – 80.

- [18] Asano K, Yanase S, Oi T. Lithium isotope effect accompanying electrochemical insertion of lithium into tin(IV) sulfifide[J]. Journal of Nuclear Science and Technology, 2008, 45 (S6): 24 - 29.
- [19] Saito S, Takami Y, Yoshizawa-fujita M, et al. Lithium isotope effects upon electrochemical lithium insertion to host material from ionic liquid medium [J]. Progress in Nuclear Energy, 2011,53(7):999-1004.
- [20] Zhang Z L, Sarswat P K, Free M L. Li isotopes concentration flux investigation under conditions of diffusion and electric field assisted migration[J]. Vacuum, 2018, 152:291 – 300.
- [21] Zhang Z L, Sarswat P K, Murali A, et al. Investigation on lithium isotope fractionation with diffusion, electrochemical migration, and electrochemical isotope effect in PEO-PC based gel electrolyte[J]. Journal of The Electrochemical Society, 2019, 166(6):E145 – E152.
- [22] Wang M Y, Sun J H, Zhang P R, et al. Lithium isotope separation by electromigration [J]. Chemical Physics Letters, 2020, (746):137290.

- [23] Demin S V, Bochkarev A V, Tsivadze A Y. Calculation of lithium isotope effects in extraction systems with Benzo-15-crown-5 and its derivatives [J]. Russian Journal of Inorganic Chemistry, 2019,64(7):930-933.
- [24] Li C, Yang X, Wang J, et al. Theoretical prediction of ⁶Li/⁷Li separation in solvent extraction system using Urey model [J]. Chemical Engineering Journal, 2019, 358:435 – 445.
- [25] Boda A, Ali S M, Rao H, et al. Ab initio and density functional theoretical design and screening of model crown ether based ligand (host) for extraction of lithium metal ion (guest): effect of donor and electronic induction [J]. Journal of Molecular Modeling, 2012, 18(8): 3507 - 3522.
- [26] 夏斐斐,曾德文,房春晖,等. Li*的水合结构和近似饱和水 合层:基于密度泛函理论的研究[J].盐湖研究,2013,21 (3):40-48.
- [27] Tsuyoshi H, Takayuki T. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane [J]. Fusion Engineering and Design, 2011, 86: 2168-2171.
- [28] Tsuyoshi H, Takayuki T. Basic technology for ⁶Li enrichment using an ionic-liquid impregnated organic membrane [J]. Journal of Nuclear Materials, 2011, 417(1-3):696-699.

Separation of Lithium Isotopes by Electromigration with Lithium Trifluoroacetate-15-crown-5 System

HUANG Chao-chi 1,2,3, SUN Jin-he 1,2, ZHANG Qian 1,2,3, ZHANG Peng-rui 1,2,3,

WANG Ci-ming ^{1,2,3}, XUE Zi-xuan^{1,2}, JIN Yan^{1,2}, JIA Yong-zhong ^{1,2}

(1. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources,

Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China;

2. Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources,

Xining, 810008, China; 3. University of Chinese Academy of Sciences, Beijing, 100049, China)

Abstract: Lithium isotopes (⁶Li and ⁷Li) play an important role in the nuclear industry. At present, COLEX process is the only method to achieve large-scale industrial application of lithium isotope separation, but it is harmful to the environment because of the mercury involved. The development of a green and efficient lithium isotope separation method is of great significance to national energy security. In this work, a crown ether solution dissolved in lithium salt was prepared and used as anode solution to drive the migration of lithium ions to cathode solution by applying an electric field. Compared with lithium salt solution dissolved with 15-crown-5, it was found that introducing water molecules into the anode solution system could promote the separation of lithium isotopes. The effect of different membrane on the separation of lithium isotopes was also investigated, and it was found that the separation effect was better in a short time when strong hydrophobic membrane was used. **Key words**: Lithium isotope separation; 15-crown-5; Electromigration; Hydration